246 MEMORY MANAGEMENT CHAP. 3

directory with a single entry, a pointer to its one and only page table. In this way,
the overhead for short segments is only two pages, instead of the million pages
that would be needed in a one-level page table.

To avoid making repeated references to memory, the Pentium, like MUL-
TICS, has a small TLB that directly maps the most recently used Dir—Page com-
binations onto the physical address of the page frame. Only when the current com-
bination is not present in the TLB is the mechanism of Fig. 3-42 actually carried
out and the TLB updated. As long as TLB misses are rare, performance is good.

It is also worth noting that if some application does not need segmentation but
is content with a single, paged, 32-bit address space, that model is possible. All
the segment registers can be set up with the same selector, whose descriptor has
Base = 0 and Limit set to the maximum. The instruction offset will then be the lin-
car address, with only a single address space used—in effect, normal paging. In
fact, all current operating systems for the Pentium work this way. OS/2 was the
only one that used the full power of the Intel MMU architecture.

All in all, one has to give credit to the Pentium designers. Given the conflict-
ing goals of implementing pure paging, pure segmentation, and paged segments,
while at the same time being compatible with the 286, and doing all of this effi-
ciently, the resulting design is surprisingly simple and clean.

Although we have covered the complete architecture of the Pentium virtual
memory, albeit briefly, it is worth saying a few words about protection, since this
subject is intimately related to the virtual memory. Just as the virtual memory
scheme is closely modeled on MULTICS, so is the protection system. The Pen-
tium supports four protection levels, with level O being the most privileged and
level 3 the least. These are shown in Fig. 3-43. At each instant, a running pro-
gram is at a certain level, indicated by a 2-bit field in its PSW. Each segment in
the system also has a level.

As long as a program restricts itself to using segments at its own level, every-
thing works fine. Attempts to access data at a higher level are permitted. At-
tempts to access data at a lower level are illegal and cause traps. Attempts to call
procedures at a different level (higher or lower) are allowed, but in a carefully

controlled way. To make an interlevel call, the CALL instruction must contain a

selector instead of an address. This selector designates a descriptor called a call
gate, which gives the address of the procedure to be called. Thus it is not possible
to jump into the middle of an arbitrary code segment at a different level. Only
official entry points may be used. The concepts of protection levels and call gates
were pioneered in MULTICS, where they were viewed as protection rings.

A typical use for this mechanism is suggested in Fig. 3-43. At level 0, we
find the kernel of the operating system, which handles I/O, memory management,
and other critical matters. At level 1, the system call handler is present. User pro-
grams may call procedures here to have system calls carried out, but only a spe-
cific and protected list of procedures may be called. Level 2 contains library pro-
cedures, possibly shared among many running programs. User programs may call

SEC.. 3.7 SEGMENTATION 247

\ser Programg .
— Typical uses of

5\~\afed librg, s X the levels

Level

Figure 3-43. Protection on the Pentium.

these procedures and read their data, but they may not modify them. Finally, user
programs run at level 3, which has the least protection. ’

Traps anfi interrupts use a mechanism similar to the call gates. They, too, ref-
erence descriptors, rather than absolute addresses, and these descriptors point to
specific procedures to be executed. The Type field in Fig. 3-40 distinguishes be-
tween code segments, data segments, and the various kinds of gates.

3.8 RESEARCH ON MEMORY MANAGEMENT

Memory management, especially paging algorithms, was once a fruitful area
for research, but most of that seems to have largely died off, at least for general-
purpose systems. Most real systems tend to use some variation on clock, because
itis easy to implement and relatively effective. One recent exception, however, is
aredesign pf the 4.4 BSD virtual memory system (Cranor and Parulkar, 1999). ’

There is still research going on concerning paging in newer kinds of systems
though. For example, cell phones and PDAs have become small PCs, and many of
tl'.lem page RAM to “disk,” only disk on a cell phone is flash memory, which has
different properties than a rotating magnetic disk. Some recent work is reported
by (In et al., 2007; Joo et al., 2006; and Park et al., 2004a). Park et al. (2004b)
have also looked at energy-aware demand paging in mobile devices.

Research is also taking place on modeling paging performance (Albers et al.
2002; Burton and Kelly, 2003; Cascaval et al., 2005; Panagiotou and Souza 2006j
and Peserico, 2003). Also of interest is memory management for multimed,ia sys:

;eorgz )(Dasigenis et al., 2001; Hand, 1999) and real-time systems (Pizlo and Vitek,






