
Lecture 20, page

Distributed Web Applications
• WWW principles

• Case Study: web caching as an illustrative example
– Invalidate versus updates
– Push versus Pull
– Cooperation between replicas

1CS677: Distributed and Operating Systems

Lecture 20, page

Traditional Web-Based Systems

• Client-server web applications

2CS677: Distributed and Operating Systems

Lecture 20, page

Web Browser Clients

• The logical components of a Web browser.

3CS677: Distributed and Operating Systems

Lecture 20, page

The Apache Web Server

• The general organization of the Apache Web server.

4CS677: Distributed and Operating Systems

Lecture 20, page

Proxy Servers

• Using a Web proxy when the browser does not speak FTP (or for
caching and offloading)

5CS677: Distributed and Operating Systems

Lecture 20, page

Multitiered Architectures

• Three tiers: HTTP, application, and database tier

6CS677: Distributed and Operating Systems

Lecture 20, page

Web Server Clusters

7CS677: Distributed and Operating Systems

• Clients connect to front-end dispatcher, which forwards requests
to a replica (recall discussion from Cluster scheduling)

• Each replica can be a tiered system
– For consistency, database can be a common/non-replicated

Lecture 20, page

Web Server Clusters (2)

• A scalable content-aware cluster of Web servers.

8CS677: Distributed and Operating Systems

Lecture 20, page

Web Clusters

• Request-based scheduling
– Forward each request to a replica based on a policy

• Session-based scheduling
– Forward each session to a replica based on a policy

• Scheduling policy: round-robin, least loaded

• HTTP redirect vs TCP splicing vs TCP handoff

9CS677: Distributed and Operating Systems

Lecture 20, page

Elastic Scaling
• Web workloads: temporal time of day, seasonal variations

– Flash crowds: black friday, sports events, news events
• Overloads can occur even with clustering and replication
• Elastic scaling: dynamically vary application capacity based on

workload (aka auto-scaling, dynamic provisioning)
• Two approaches:

– Horizontal scaling: increase or decrease # of replicas based on load
– Vertical scaling: increase or decrease size of replica (e.g., # of cores

allocated to container or VM) based on load
– Proactive versus reactive scaling

– Proactive: predict future load and scale in advance
– Reactive: scale based on observed workload

• Common in large cloud-based web applications
10CS677: Distributed and Operating Systems

Lecture 20, page

Micro-services Architecture
• Micro-services: application is a collection of smaller

services
• Example of service-oriented architecture
• Modular approach to overcome “monolith hell”

• Each microservice is small and can be maintained independently of
others

• Each is independently deployable

• Clustering and auto-scaling can be performed independently

11CS677: Distributed and Operating Systems

Lecture 20, page

Scaling Web applications
• Three approaches for scaling

12CS677: Distributed and Operating Systems

https://microservices.io/articles/scalecube.html

Lecture 20, page

Web Documents

• Six top-level MIME types and some common subtypes.

13CS677: Distributed and Operating Systems

Lecture 20, page

HTTP Connections

• Using nonpersistent connections.

14CS677: Distributed and Operating Systems

Lecture 20, page

HTTP 1.1 Connections

• (b) Using persistent connections.

15CS677: Distributed and Operating Systems

Lecture 20, page

HTTP Methods

• Operations supported by HTTP.

16CS677: Distributed and Operating Systems

Lecture 20, page

HTTP 2.0
• Http 1.1 allows pipelining over same connection

– Most browsers do not use this feature
• HTTP v2: Designed to reduce message latency

– No new message or response types
• Key features

– Binary headers (over text headers of http 1.1)
– Uses compression of headers and messages
– Multiplex concurrent connection over same TCP connection

• each connection has multiple “streams”, each carrying a
request and response

– No blocking caused by pipelining in http 1.1

17CS677: Distributed and Operating Systems

See https://developers.google.com/web/fundamentals/performance/http2/

Lecture 20, page

Web Services Fundamentals

• The principle of a Web service.
18CS677: Distributed and Operating Systems

Lecture 20, page

Simple Object Access Protocol

• An example of an XML-based SOAP message.

19CS677: Distributed and Operating Systems

Lecture 20, page

RESTful Web Services
• SOAP heavy-weight protocol for web-based

distributed computing
– RESTful web service: lightweight , point-to-point XML

comm
• REST=representative state transfer

– HTTP GET => read
– HTTP POST => create, update, delete
– HTTP PUT => create, update
– HTTP DELETE => delete

• Simpler than RPC-sytle SOAP
– closer to the web

20CS677: Distributed and Operating Systems

Lecture 20, page

RESTful Example

GET /StockPrice/IBM HTTP/1.1
Host: example.org
Accept: text/xml
Accept-Charset: utf-8

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<s:Quote xmlns:s="http://example.org/stock-service">
 <s:TickerSymbol>IBM</s:TickerSymbol>
 <s:StockPrice>45.25</s:StockPrice>
</s:Quote>

21CS677: Distributed and Operating Systems

Lecture 20, page

Corresponding SOAP Call
GET /StockPrice HTTP/1.1
Host: example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:s="http://www.example.org/stock-service">
 <env:Body>
 <s:GetStockQuote>
 <s:TickerSymbol>IBM</s:TickerSymbol>
 </s:GetStockQuote>
 </env:Body>
</env:Envelope>

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:s="http://www.example.org/stock-service">
 <env:Body>
 <s:GetStockQuoteResponse>
 <s:StockPrice>45.25</s:StockPrice>
 </s:GetStockQuoteResponse>
 </env:Body>
</env:Envelope>

22CS677: Distributed and Operating Systems

Lecture 20, page

SOAP vs RESTful WS

• Language, platform and
transport agnostic

• Supports general
distributed computing

• Standards based (WSDL,
UDDI dir. service...)

• Builtin error handling
• Extensible
• More heavy-weight
• Harder to develop

• Language and platform
agnostic

• Point-to-point only; no
intermediaries

• Lack of standards support
for security, reliability (“roll
you own”

• Simpler, less learning curve,
less reliance on tools

• Tied to HTTP transport layer
• More concise

23CS677: Distributed and Operating Systems

