
CS677: Distributed and Operating Systems Lecture 12, page

Classical Problems in Distributed Systems

1

• Time ordering and clock synchronization (today)

Next few classes:
• Leader election
• Mutual exclusion
• Distributed transactions
• Deadlock detection
• CAP Theorem

CS677: Distributed and Operating Systems Lecture 12, page

Clock Synchronization

2

• Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

• Distributed systems: each node has own system clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be assigned

an earlier time

CS677: Distributed and Operating Systems Lecture 12, page

Physical Clocks: A Primer

3

• How do you tell time?
– Use astronomical metrics (solar day)

• Accurate clocks are atomic oscillators (one part in 1013)
• Coordinated universal time (UTC) – international standard based on atomic

time
– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

• Most clocks are less accurate (e.g., mechanical watches)
– Computers use crystal-based blocks (one part in million)
– Results in clock drift

• Need to synchronize machines with a master or with one another

CS677: Distributed and Operating Systems Lecture 12, page

Clock Synchronization

4

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt in time Δt
– To limit drift to δ => resynchronize every δ/2ρ seconds

CS677: Distributed and Operating Systems Lecture 12, page

Cristian’s Algorithm

5

• Synchronize machines to a
time server with a UTC
receiver

• Machine P requests time from
server every δ/2ρ seconds
– Receives time t from server, P

sets clock to t+treply where treply
is the time to send reply to P

– Use (treq+treply)/2 as an estimate
of treply

– Improve accuracy by making a
series of measurements

CS677: Distributed and Operating Systems Lecture 12, page

Berkeley Algorithm

6

• Used in systems without UTC receiver
– Keep clocks synchronized with one another
– One computer is master, other are slaves
– Master periodically polls slaves for their times

• Average times and return differences to slaves
• Communication delays compensated as in Cristian’s algo

– Failure of master => election of a new master

CS677: Distributed and Operating Systems Lecture 12, page

Berkeley Algorithm

7

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

CS677: Distributed and Operating Systems Lecture 12, page

Distributed Approaches

8

• Both approaches studied thus far are centralized
• Decentralized algorithms: use resync intervals

– Broadcast time at the start of the interval
– Collect all other broadcast that arrive in a period S
– Use average value of all reported times
– Can throw away few highest and lowest values

• Approaches in use today
– rdate: synchronizes a machine with a specified machine
– Network Time Protocol (NTP) - discussed in next slide

• Uses advanced techniques for accuracies of 1-50 ms

CS677: Distributed and Operating Systems Lecture 12, page

Network Time Protocol

9

• Widely used standard - based on Cristian’s algo
– Uses eight pairs of delays from A to B and B to A.

• Hierarchical – uses notion of stratum
• Clock can not go backward

CS677: Distributed and Operating Systems Lecture 12, page

Global Positioning System

10

• Computing a position in a two-dimensional space.

CS677: Distributed and Operating Systems Lecture 12, page

Global Positioning System

11

• Real world facts that complicate GPS

• It takes a while before data on a satellite’s
position reaches the receiver.

• The receiver’s clock is generally not in
synch with that of a satellite.

CS677: Distributed and Operating Systems Lecture 12, page

GPS Basics

12

• Dr – deviation of receiver from actual time

• Beacon with timestamp Ti received at Tnow
– Delay Di = (Tnow – Ti) + Dr
– Distance di = c (Tnow- Ti)
– Also di = sqrt[(xi-xr)2 + (yi-yr)2 + (zi-zr)2]

• Four unknowns, need 4 satellites.

•

CS677: Distributed and Operating Systems Lecture 12, page

Clock Synchronization in Wireless Networks

13

• Reference broadcast sync (RBS): receivers synchronize with one
another using RB server
– Mutual offset = Ti,s- Tj,s (can average over multiple readings)

CS677: Distributed and Operating Systems Lecture 12, page

Logical Clocks

14

• For many problems, internal consistency of clocks is
important
– Absolute time is less important
– Use logical clocks

• Key idea:
– Clock synchronization need not be absolute
– If two machines do not interact, no need to synchronize them
– More importantly, processes need to agree on the order in

which events occur rather than the time at which they occurred

CS677: Distributed and Operating Systems Lecture 12, page

Event Ordering

15

• Problem: define a total ordering of all events that occur
in a system

• Events in a single processor machine are totally ordered
• In a distributed system:

– No global clock, local clocks may be unsynchronized
– Can not order events on different machines using local times

• Key idea [Lamport]
– Processes exchange messages
– Message must be sent before received
– Send/receive used to order events (and synchronize clocks)

CS677: Distributed and Operating Systems Lecture 12, page

Happened Before Relation

16

• If A and B are events in the same process and A executed before B,
then A -> B

• If A represents sending of a message and B is the receipt of this
message, then A -> B

• Relation is transitive:
– A -> B and B -> C => A -> C

• Relation is undefined across processes that do not exchange
messages
– Partial ordering on events

CS677: Distributed and Operating Systems Lecture 12, page

Event Ordering Using HB

17

• Goal: define the notion of time of an event such that
– If A-> B then C(A) < C(B)
– If A and B are concurrent, then C(A) <, = or > C(B)

• Solution:
– Each processor maintains a logical clock LCi
– Whenever an event occurs locally at I, LCi = LCi+1
– When i sends message to j, piggyback Lci
– When j receives message from i

• If LCj < LCi then LCj = LCi +1 else do nothing
– Claim: this algorithm meets the above goals

CS677: Distributed and Operating Systems Lecture 12, page

Lamport’s Logical Clocks

18

CS677: Distributed and Operating Systems Lecture 12, page

Total Order

19

• Create total order by attaching process number to an
event. If time stamps match, use process # to order

a
b

P1 P2 P3

c
d

e

f

g

h

i

j

k

l

1.1 1.2
1.32.1

3.2
2.33.1

4.1 4.2

5.2

6.2

3.3

CS677: Distributed and Operating Systems Lecture 12, page

Example: Totally-Ordered Multicasting

20

• Updating a replicated database and leaving it in an inconsistent
state.

CS677: Distributed and Operating Systems Lecture 12, page

Algorithm

21

● Totally ordered multicasting for banking example
● Update is timestamped with sender’s logical time

● Update message is multicast (including to sender)

● When message is received
! It is put into local queue
! Ordered according to timestamp,
! Multicast acknowledgement

! Message is delivered
! It is at the head of the queue
! IT has been acknowledged by all processes
! P_i sends ACK to P_j if

– P_i has not made a request
– P_i update has been processed and P_i’s ID > P_j’s Id

CS677: Distributed and Operating Systems Lecture 12, page

Causality

22

• Lamport’s logical clocks
– If A -> B then C(A) < C(B)
– Reverse is not true!!

• Nothing can be said about events by comparing time-
stamps!

• If C(A) < C(B), then ??
• Need to maintain causality

– If a -> b then a is casually related to b
– Causal delivery:If send(m) -> send(n) => deliver(m) ->

deliver(n)
– Capture causal relationships between groups of processes
– Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

CS677: Distributed and Operating Systems Lecture 12, page

Vector Clocks

23

• Each process i maintains a vector Vi
– Vi[i] : number of events that have occurred at i
– Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows
– Local event: increment Vi[I]
– Send a message :piggyback entire vector V
– Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows
occurred at another process k

• Also Vj[i] = Vj[i]+1
• Exercise: prove that if V(A)<V(B), then A causally

precedes B and the other way around.

CS677: Distributed and Operating Systems Lecture 12, page

Enforcing Causal Communication

24

• Figure 6-13. Enforcing causal communication.

CS677: Distributed and Operating Systems Lecture 12, page

Global State

25

• Global state of a distributed system
– Local state of each process
– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system
– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a
distributed system?
– Each process is independent
– No global clock or synchronization

• Distributed snapshot: a consistent global state

CS677: Distributed and Operating Systems Lecture 12, page

Global State (1)

26

a) A consistent cut
b) An inconsistent cut

CS677: Distributed and Operating Systems Lecture 12, page

Distributed Snapshot Algorithm

27

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

• On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
– Subsequent marker on a channel: stop saving state for that

channel

CS677: Distributed and Operating Systems Lecture 12, page

Distributed Snapshot

28

• A process finishes when
– It receives a marker on each incoming channel and processes

them all
– State: local state plus state of all channels
– Send state to initiator

• Any process can initiate snapshot
– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

CS677: Distributed and Operating Systems Lecture 12, page

Snapshot Algorithm Example

29

a) Organization of a process and channels for a distributed snapshot

CS677: Distributed and Operating Systems Lecture 12, page

Snapshot Algorithm Example

30

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the state of the

incoming channel

CS677: Distributed and Operating Systems Lecture 12, page

Termination Detection

31

• Detecting the end of a distributed computation
• Notation: let sender be predecessor, receiver be successor
• Two types of markers: Done and Continue
• After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
• Send a Done only when

– All of Q’s successors send a Done
– Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone

