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Classical Problems in Distributed Systems
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• Time ordering and clock synchronization (today) 

Next few classes: 
• Leader election 
• Mutual exclusion 
• Distributed transactions 
• Deadlock detection 
• CAP Theorem
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Clock Synchronization
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• Time in unambiguous in centralized systems 
– System clock keeps time, all entities use this for time 

• Distributed systems: each node has own system clock 
– Crystal-based clocks are less accurate (1 part in million) 
– Problem: An event that occurred after another may be assigned 

an earlier time
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Physical Clocks: A Primer
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• How do you tell time? 
– Use astronomical metrics (solar day) 

• Accurate clocks are atomic oscillators (one part in 1013) 
• Coordinated universal time (UTC) – international standard based on atomic 

time 
– Add leap seconds to be consistent with astronomical time 
– UTC broadcast on radio (satellite and earth) 
– Receivers accurate to 0.1 – 10 ms 

• Most clocks are less accurate (e.g., mechanical watches) 
– Computers use crystal-based blocks (one part in million)  
– Results in clock drift 

• Need to synchronize machines with a master or with one another
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Clock Synchronization
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• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt  in time Δt 
– To limit drift to δ => resynchronize every δ/2ρ seconds



CS677: Distributed and Operating Systems Lecture 12, page 

Cristian’s Algorithm
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• Synchronize machines to a 
time server with a UTC 
receiver 

• Machine P requests time from 
server every δ/2ρ seconds 
– Receives time t from server, P 

sets clock to t+treply where treply 
is the time to send reply to P 

– Use (treq+treply)/2 as an estimate 
of treply 

– Improve accuracy by making a 
series of measurements
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Berkeley Algorithm

6

• Used in systems without UTC receiver 
– Keep clocks synchronized with one another  
– One computer is master, other are slaves 
– Master periodically polls slaves for their times 

• Average times and return differences to slaves 
• Communication delays compensated as in Cristian’s algo 

– Failure of master => election of a new master
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Berkeley Algorithm
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a) The time daemon asks all the other machines for their clock values 
b) The machines answer 
c) The time daemon tells everyone how to adjust their clock
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Distributed Approaches
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• Both approaches studied thus far are centralized 
• Decentralized algorithms: use resync intervals 

– Broadcast time at the start of the interval 
– Collect all other broadcast that arrive in a period S 
– Use average value of all reported times 
– Can throw away few highest and lowest values 

• Approaches in use today 
– rdate: synchronizes a machine with a specified machine 
– Network Time Protocol (NTP) - discussed in next slide 

• Uses advanced techniques for accuracies of 1-50 ms
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Network Time Protocol
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• Widely used standard  - based on Cristian’s algo 
– Uses eight pairs of  delays from A to B and B to A. 

• Hierarchical – uses notion of stratum 
• Clock can not go backward 
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Global Positioning System

10

• Computing a position in a two-dimensional space.
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Global Positioning System
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• Real world facts that complicate GPS 

• It takes a while before data on a satellite’s 
position reaches the receiver. 

• The receiver’s clock is generally not in 
synch with that of a satellite.
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GPS Basics
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• Dr – deviation of receiver from actual time 

• Beacon with timestamp Ti received at Tnow 
–  Delay  Di = (Tnow – Ti) + Dr 
– Distance di  = c ( Tnow- Ti) 
– Also  di = sqrt[ (xi-xr)2 + (yi-yr)2 + (zi-zr)2 ] 

• Four unknowns, need 4 satellites. 

•     
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Clock Synchronization in Wireless Networks
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• Reference broadcast sync (RBS): receivers synchronize with one 
another using RB server 
– Mutual offset = Ti,s- Tj,s     (can average over multiple readings)
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Logical Clocks
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• For many problems, internal consistency of clocks is 
important 
– Absolute time is less important 
– Use logical clocks 

• Key idea: 
– Clock synchronization need not be absolute 
– If two machines do not interact, no need to synchronize them 
– More importantly, processes need to agree on the order in 

which events occur rather than the time at which they occurred
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Event Ordering
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• Problem: define a total ordering of all events that occur 
in a system 

• Events in a single processor machine are totally ordered 
• In a distributed system: 

– No global clock, local clocks may be unsynchronized 
– Can not order events on different machines using local times 

• Key idea [Lamport ] 
– Processes exchange messages 
– Message must be sent before received 
– Send/receive used to order events (and synchronize clocks)
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Happened Before Relation
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• If A and B are events in the same process and A executed before B, 
then  A -> B 

• If A represents sending of a message and B is the receipt of this 
message, then A -> B 

• Relation is transitive: 
– A -> B and B -> C  => A -> C 

• Relation is undefined across processes that do not exchange 
messages 
– Partial ordering on events
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Event Ordering Using HB
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• Goal: define the notion of time of an event such that 
– If A-> B then C(A) < C(B) 
– If  A and B are concurrent, then C(A)  <, = or > C(B) 

• Solution:  
– Each processor maintains a logical clock  LCi 
– Whenever an event occurs locally at I, LCi = LCi+1 
– When i sends message to j, piggyback Lci 
– When  j receives message from i 

• If LCj < LCi then LCj = LCi +1 else do nothing 
– Claim: this algorithm meets the above goals
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Lamport’s Logical Clocks
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Total Order
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• Create total order by attaching process number to an 
event.  If time stamps match, use process # to order

a
b

P1 P2 P3

c
d

e

f

g

h

i

j

k

l

1.1 1.2
1.32.1

3.2
2.33.1

4.1 4.2

5.2

6.2

3.3
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Example: Totally-Ordered Multicasting
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• Updating a replicated database and leaving it in an inconsistent 
state.



CS677: Distributed and Operating Systems Lecture 12, page 

Algorithm
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● Totally ordered multicasting for banking example 
● Update is timestamped with sender’s logical time 

● Update message is multicast (including to sender) 

● When message is received 
! It is put into local queue 
! Ordered according to timestamp, 
! Multicast acknowledgement 

! Message is delivered 
! It is at the head of the queue 
! IT has been acknowledged by all processes 
! P_i sends ACK to P_j if   

– P_i has not made a request 
– P_i update has been processed and P_i’s ID > P_j’s Id
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Causality
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• Lamport’s logical clocks 
– If  A -> B then C(A) < C(B) 
– Reverse is not true!! 

• Nothing can be  said about events by comparing time-
stamps! 

• If C(A) < C(B), then ?? 
• Need to maintain causality 

– If a -> b then a is casually related to b 
– Causal delivery:If send(m) -> send(n) => deliver(m) -> 

deliver(n) 
– Capture causal relationships between groups of processes 
– Need a time-stamping mechanism such that: 

• If T(A) < T(B) then A should have causally preceded B
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Vector Clocks
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• Each process i maintains a vector Vi 
– Vi[i] : number of events that have occurred at i 
– Vi[j] : number of events I knows have occurred at process j 

• Update vector clocks as follows 
– Local event: increment Vi[I] 
– Send a message :piggyback entire vector V 
– Receipt of a message: Vj[k] = max( Vj[k],Vi[k] ) 

• Receiver is told about how many events the sender knows 
occurred at another process k 

• Also Vj[i] = Vj[i]+1 
• Exercise: prove that if V(A)<V(B), then A causally 

precedes B and the other way around.
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Enforcing Causal Communication
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• Figure 6-13. Enforcing causal communication.
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Global State
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• Global state of a distributed system 
– Local state of each process 
– Messages sent but not received (state of the queues) 

• Many applications need to know the state of the system 
– Failure recovery, distributed deadlock detection 

• Problem: how can you figure out the state of a 
distributed system? 
– Each process is independent 
– No global clock or synchronization 

• Distributed snapshot: a consistent global state
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Global State (1)
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a) A consistent cut 
b) An inconsistent cut
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Distributed Snapshot Algorithm
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• Assume each process communicates with another 
process using unidirectional point-to-point channels (e.g, 
TCP connections) 

• Any process can initiate the algorithm 
– Checkpoint local state  
– Send marker on every outgoing channel 

• On receiving a marker 
– Checkpoint state if first marker and send marker on outgoing 

channels, save messages on all other channels until: 
– Subsequent marker on a channel: stop saving state for that 

channel
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Distributed Snapshot
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• A process finishes when 
– It receives a marker on each incoming channel and processes 

them all 
– State: local state plus state of all channels 
– Send state to initiator 

• Any process can initiate snapshot 
– Multiple snapshots may be in progress  

• Each is separate, and each is distinguished by tagging the 
marker with the initiator ID (and sequence number)

A
C

BM

M
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Snapshot Algorithm Example
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a) Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example
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b) Process Q receives a marker for the first time and records its local state 
c) Q records all incoming message 
d) Q receives a marker for its incoming channel and finishes recording the state of the 

incoming channel
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Termination Detection
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• Detecting the end of a distributed computation 
• Notation: let sender be predecessor, receiver be successor 
• Two types of markers: Done and Continue 
• After finishing its part of the snapshot, process Q sends a Done or 

a Continue to its predecessor 
• Send a Done only when 

– All of Q’s successors send a Done 
– Q has not received any message since it check-pointed its local state and 

received a marker on all incoming channels 
– Else send a Continue 

• Computation has terminated if the initiator receives Done 
messages from everyone


