Code, Process, and VM Migration

* Motivation

* How does migration occur?

* Resource migration

» Agent-based system

* Details of process migration

* Migration of Virtual Machines

@ N\¥: ,5 Computer Science CS677: Distributed OS Lecture 7, page 1

Part 1: Migration Introduction

* Key reasons: performance and flexibility

 Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

» Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data
from server to client (e.g., databases)

— Improve parallelism — agent-based web searches

Computer Science CS677: Distributed OS Lecture 7, page 2



Motivation

- Flexibility
— Dynamic configuration of distributed system

— Clients don’t need preinstalled software — download on
demand

2. Client and server
communicate

/ Server
\

B
i

/
1. Client fetches code
Service-specific
client-side code

Code repository

Client

g Computer Science CS677: Distributed OS Lecture 7, page 3

Migration models

Process = code seg + resource seg + execution seg

Weak versus strong mobility
— Weak => transferred program starts from initial state

Sender-initiated versus receiver-initiated

Sender-initiated
— migration initiated by machine where code resides
* Client sending a query to database server
— Client should be pre-registered
Receiver-initiated
— Migration initiated by machine that receives code
— Java applets

— Receiver can be anonymous
: Computer Science CS677: Distributed OS Lecture 7, page 4




Who executes migrated entity?

* Code migration:
— Execute in a separate process
— [Applets] Execute in target process

* Process migration
— Remote cloning
— Migrate the process

B omputer Science CS677: Distributed OS Lecture 7, page 5

Models for Code Migration

Execute at
Sender-initiated " target process
mobility . Execute in
N separate process
Weak mobility Execute at
Receiver-initiated — target process
mobility "~ Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated g P

mobility
Clone process
Strong mobility

Migrat
Receiver-initiated — Igrate process
mobility

Clone process

H Computer Science CS677: Distributed OS Lecture 7, page 6



Do Resources Migrate?

* Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
« Database, web sites
— Fixed resources
* Local devices, communication end points

Computer Science CS677: Distributed OS Lecture 7, page 7

Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to-| By identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding | By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

Actions to be taken with respect to the references to local resources
when migrating code to another machine.

GR: establish global system-wide reference

MV: move the resources

CP: copy the resource

RB: rebind process to locally available resource

Computer Science CS677: Distributed OS Lecture 7, page 8



Migration in Heterogeneous Systems

* Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled

Local stack procedure call onto
operations B migration stack
Local
Procedure B / variables B
Return label
(jump) to A
Call from Local Parameter
AtoB variables B values for B
Return addr. Identification
}\ fromB for proc. B
Local
Parameter variables A
Push procedure values for B
call onto program Return label
stack Local stack to caller A
operations A Parameter
Local values for A
variables A "
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled
data only)

omputer Science CS677: Distributed OS Lecture 7, page 9




