
Lecture 8, page

OS Virtualization

1

• Part 1: OS Virtualization

• Part 2: Fair share allocation

• Part 3: Docker and linux containers

Lecture 8, page

Part 1: OS Virtualization

2

• Recall virtualization: use native interface to emulate
another one

• Broader view of OS virtualization:
• OS interface (e.g., sys call interface) can emulate another

OS interface
• E.g., Solaris zone can emulate older kernel version

• Modern view of OS virtualization
• OS paradigm where kernel allows multiple isolated user

space instances
• Each instance looks like real machine running OS
• Outside processes can see all resources; processes inside

isolated instances see a restricted set

Lecture 8, page

Part 1: OS Virtualization

3

• Emulate OS-level interface with native interface
• “Lightweight” virtual machines

– No hypervisor, OS provides necessary support

• Referred to as containers (“isolated set of processes”)
– Solaris containers, BSD jails, Linux containers

Lecture 8, page

Linux Containers (LXC)

4

• Containers share OS kernel of the host
– OS provides resource isolation

• Benefits
– Fast provisioning, bare-metal like performance, lightweight

Material courtesy of
“Realizing Linux Containers”

by Boden Russell, IBM

Lecture 8, page

OS Mechanisms for LXC

5

• OS mechanisms for resource isolation and
management

• namespaces: process-based resource isolation

• Cgroups: limits, prioritization, accounting, control

• chroot: apparent root directory
• Linux security module, access control
• Tools (e.g., docker) for easy management

Lecture 8, page

Linux Namespaces

6

• Namespace: restrict what can a container see?
– Provide process level isolation of global resources

• Processes have illusion they are the only processes in
the system

• MNT: mount points, file systems (what files, dir are
visible)?

• PID: what other processes are visible?
• NET: NICs, routing
• Users: what uid, gid are visible?
• chroot: change root directory

Lecture 8, page

Linux cgroups

7

• Resource isolation
– what and how much can a container use?

• Set upper bounds (limits) on resources that can be used
• Fair sharing of certain resources

• Examples:
– cpu: weighted proportional share of CPU for a group
– cpuset: cores that a group can access
– block io: weighted proportional block IO access
– memory: max memory limit for a group

Lecture 8, page

Putting it all together

8

• Images: files/data for a container
– can run different distributions/apps on a host

• Linux security modules and access control
• Linux capabilities: per process privileges

Lecture 8, page

Part 2: Proportional Share Scheduling

9

• Proportional-share scheduling: allocate a fraction (“slice/
share”) of the resource
– allocate CPU capacity to containers, VM, or a process
– allocate network bandwidth to an application, container

• Share-based scheduling:
– Assign each process a weight w_i (a “share”)
– Allocation is in proportional to share
– fairness: reused unused cycles to others in proportion to weight
– Examples: fair queuing, start time fair queuing

• Hard limits: assign upper bounds (e.g., 30%), no
reallocation

Lecture 8, page

Weighted Fair Queuing (WFQ)

10

• One of the original proportional share schedulers
• Each process /container assigned a weight

– each receives fraction of resource

• OS keep a counter for each process
– Tracks how much CPU service the process has received

– After each quantum, where q is quantum length

– Scheduler schedules task with min
– what happens when process blocks: accumulates “credit” and

can starve others

• Track and

wi
wi + ∑

j
wj

si

si = si + q
wi

si

smin = min(s1, s2, . .) si = max(smin, si + q
wi

)

Lecture 8, page

Share-based Schedulers

11

Lecture 8, page

Part 3: Docker and Linux Containers

12

• Linux containers are a set of kernel features
– Need user space tools to manage containers
– Virtuozo, OpenVZm, VServer,Lxc-tools, Docker

• What does Docker add to Linux containers?
– Portable container deployment across machines
– Application-centric: geared for app deployment
– Automatic builds: create containers from build files
– Component re-use

• Docker containers are self-contained: no
dependencies

Lecture 8, page

Docker

13

• Docker uses Linux containers

Lecture 8, page

LXC Virtualization Using Docker

14

• Portable: docker images run anywhere docker runs
• Docker decouples LXC provider from operations

– uses virtual resources (LXC virtualization)
• fair share of physical NIC vs use virtual NICs that are fair-

shared

Lecture 8, page

Docker Images and Use

15

• Docker uses a union file system (AuFS)
– allows containers to use host FS safely

• Essentially a copy-on-write file system
– read-only files shared (e.g., share glibc)
– make a copy upon write

• Allows for small efficient container images
• Docker Use Cases

– “Run once, deploy anywhere”
– Images can be pulled/pushed to repository
– Containers can be a single process (useful for

microservices) or a full OS

Lecture 8, page

Case Study: PlanetLab

16

• Distributed cluster across universities
– Used for experimental research by students and faculty in

networking and distributed systems
• Uses a virtualized architecture

– Linux Vservers
– Node manager per machine
– Obtain a “slice” for an experiment: slice creation service

