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6.1 Overview

In the previous lecture, we learned about the different kinds of threads, specifically user-level threads and
kernel-level threads. In this lecture we will cover:

Thread Scheduling

Scheduler Activations

Lightweight process

Multiprocessor scheduling

Distributed scheduling

Case Studies : V-System, Sprite, Volunteer Computing, Condor

6.2 Thread Scheduling Example

Here, we assume that CPU scheduler uses round-robin time slices. We are given that the program consists
of two functions: foo() and bar().

Case 1. No I/O involved: For a single threaded process, sequential execution will first complete the exe-
cution of foo() and then after the completion of foo(), the execution of bar() starts. In case of multithreaded
process, two separate threads will execute the functions foo() and bar() concurrently and the execution will
be interleaved. In terms of completion time, there will be no improvement.

Case 2. I/O involved: Here we will see the advantage of running a multi-threaded process. In case
of sequential run, the CPU will be idle and there will be no computation. But in case of multi-threaded
process, execution time will shrink, as I/O does not block CPU. If we run the multi-threaded process on
multiple cores, the I/O does not help us run extra computation, but the execution time shrinks due to true
parallelism.
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Figure 6.1: Example of thread scheduling.

6.3 Scheduler Activations

Scheduler activations are a threading mechanism which give the performance of user-level threads with the
behavior of kernel threads. There is active cooperation and exchange of information between the user-level
thread scheduler and the OS to get better scheduling. The same idea is also present in lightweight processes.

6.4 Lightweight Processes

Lightweight processes are a schedulable entity which exist on a layer between kernel-threads and user-threads.
They are managed by the kernel. One actual process may use multiple LWPs. Each LWP is bound to a
kernel thread. User-level threads can be flexibly mapped to LWP. The mapping is decided by the developer
and can be n : m, where n threads in user-level are mapped to m threads in kernel-level.

Figure 6.2: Lightweight processes.
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6.5 Multiprocessor scheduling

Here, we will talk about single machines with shared memory multiprocessor or multi-core CPU. Looking
at the diagram below, the circles at the top are processors. Caches are presented at each of the processors.
They keep instructions or data, and are used to speed up the execution of the program. There might be
more than two level of caches (L1, L2, L3). Some caches are shared; others are not. Memory, or RAM, are
shared across all of the processors using system bus; a program running on one processor can access any
address in memory. Multi-processor scheduling involves scheduling tasks in such environment.

Figure 6.3: Multiprocessor scheduling.

6.5.1 Central queue implementation

In a central queue, all of the processors share a single global queue where all the threads and processes are
present. Whenever the time slice on any processor is going to end, that processor will look at the ready
queue, pull a thread or process from that queue, and schedule it.

Figure 6.4: A central queue.

6.5.2 Distributed queue implementation

In a distributed queue, there are more than one queue in the system. The processes or threads are going to
be part of one of those queue. When a processor becomes idle it is going to look at its local queue, and only
take the next job in that queue to schedule for execution.
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Figure 6.5: A distributed queue.

6.5.3 Pros and cons of centralized queue and distributed queue

The centralized queue is just shared data structure. As the number of processors grows, we face the problem
of synchronization bottleneck. We have to use some synchronization primitives - the standard one being
a lock. When the time slice on one processor ends, that processor has to go to the queue, lock the queue,
and pick a job. If another processor becomes idle during this, this processor has to wait until the previous
processor has picked the job and released the lock. No matter how efficient synchronization primitives are,
there is still going to be synchronization overhead. That overhead will grow as the number of processors
increases because there is going to be lock contention. There will be a lot of idle timeslices which will be
waster.

Distributed queue experiences less contention. When there is one queue per processor, there is hardly
contention at all. The processor just goes to its local queue and pull a thread. Multiprocessor scheduling
wouldn’t be impacted by the # of processors in a system.

But distributed queue needs to deal with load imbalance. Suppose there are n tasks. The n jobs will be
split across the distributed queues. How splitting occur matters - if the queues are not equally balanced
then some tasks are going to get more cpus time than others. Tasks in shorter queues get more round-robin
timeshare. To deal with this, every once in a while look at all the queues and their lengths, and equalize
them again so that every process gets approximately fair share of CPU time.

Cache affinity is important. Respecting cache affinity can hugely improve time efficiently. A process or
thread has affinity to a processor because the cache there holds its data. Let's say processor 1 picks up a
job and schedules it for a time slice. By the time that time slice ends, the cache for that processor would be
warm, with data and instruction for that job stored in the cache. The process goes to the end of the queue,
eventually appears at the front, and get scheduled at another processor. There is no mapping of task to
processor in the centralized queue. That processor will start from a cold cache, with no data and instruction
for this job. The initial instructions will all be cache misses. Program execution is slowed down to warm up
the cache, and then time slice ends.

This argues using distributed queue based scheduling. Once process joins a queue it will stay in the same
queue. Next time it gets scheduled there will be data and instructions from the previous time slice i.e. start
with warm cache. But even though you might try to schedule process or thread on the same processor where
it was executed last, every time you run again you still might not have all your data and instructions in the
cache due to other processes in your system. You want to have larger time slices or quantum durations to
account for the time when there is some early fraction of the quantum maybe all caches misses. You want
to still get to run on the caches once it's warmed up for some period of time. As a result, time slices in
multiprocessor systems tend to be longer than the ones in uniprocessor systems.

While designing CPU scheduler, Cache Affinity plays the most important part. It should be considered
over synchronization bottleneck and lock contention. So, there are couple of things to keep in mind while
scheduling on multiprocessors: 1. Exploit cache affinity: Try to schedule on the same processor that a
process/thread executed last. 2. Pick larger quantum sizes for the time slicing to decrease context switch
overhead.

6.5.4 Scheduling parallel applications on SMP using gang scheduling

One last point on multiprocessor scheduling. Until now, we assumed that the processes/threads are indepen-
dent. We just picked the one at the front of the queue and we did not care about what was running in other
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processors. If you think of a parallel process with many many threads or a job with many processes that are
coordinating some larger activities, you might not want to schedule them independently. For example, let's
say there are two cpu's and a process with two threads. Let's assume when these threads are executed they
also need to communicate with each other for application needs. When T1 runs on Processor A, T2 may
not be running on Processor B i.e. some other job may be running on Processor B. If T1 sends a message
to T2, then it will wait for a reply until processor B runs T2 (so T2 can actually receive the message and
process it). There is increase in waiting time.

Figure 6.5: Two cpu, and a process with two threads.

Gang scheduling schedule parallel jobs to run on different processors together, as a group in the same time
slice. This allows true parallelism, i.e. all the threads of a process can run simultaneously. Gang scheduling
is used in special-purpose multi-processors that are designed specifically to execute specialized, massively
parallel applications such as scientific jobs.

If one component blocks, the entire applications will be preempted. The remaining n− 1 timeslices will end
and the all the gang components will resume when the other thread gets unblocked. Smart scheduling can
take care of it too, by adjusting the priority.

Q: Is there a general purpose scheduling that you would normally run on a parallel machine and switch to
gang scheduling only when there is a parallel application?

A: That is technically possible, but the hardware machines that gang schedulers run on are so specialized
you would not run general-purpose applications.

6.6 Distributed scheduling

6.6.1 Motivation

Consider the scenario in which we have N independent machines connected to each other over a network.
When a new application or process arrives at one of the machines, normally the operating system of that
machine would execute job locally. In distributed scheduling, you have additional degree of flexibility. Even
though the user submit job at machine i, the system may actually decides to execute the job at machine
g and bring back the results. Distributed scheduling - taking jobs that are arriving at one machine and
running them somewhere else in the system - does this makes sense (any advantage to this)?

Scenario 1: Lightly loaded system

You should run job locally at the machine where it arrives. No benefit of moving a job because you have
enough resources to do it.

Scenario 2: Heavily loaded system

You want to move a job somewhere else but there are no resources available in the system for you to run
that job.
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Scenario 3: Moderately loaded system

If a job arrives at machine i, and machine i happens to be slightly less loaded than other machines, then run
it locally. If machine i happens to be more heavily loaded than other machines, then find another machine
to run that job. This scenario would actually benefit from distributed scheduling.

A more technical phrasing of the question would be: what's the probability that at least one system is
idle and one job is waiting? System idle means that exists some machine that has more resources to actually
run more jobs than it is currently running. Job waiting means there is a job that arrived at heavily loaded
machine and waiting to run. We benefit from distributed scheduling when both of these cases are true.

Figure 6.6: The relationship betweem system utilization and resource undertilization.

� Lightly loaded system:

P(at least one system idle) high

P(one job waiting) low

P(at least one system idle and one job waiting) low

� Heavily loaded system:

P(one job waiting) high

P(at least one machine idle) almost zero

P(at least one system idle and one job waiting) low

� Medium loaded system is the area of high probability under the curve

Note: P(at least one system idle and one job waiting) = P(one job waiting) * P(at least one system idle)

The three lines are constructed by different system parameter settings but the overall curve is the point.

6.6.2 Design issues

Performance metric: mean response time.

Load: CPU queue length and CPU utilization. Easy to measure and reflect performance improvement.

Types of policies:
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� In static policy, decisions are hard-wired into scheduling algorithm using prior knowledge of system.

� In dynamic policy, the current state of the load information is used to dynamically make decisions.

� In adaptive policy, parameters of the scheduling algorithm change according to load. Can pick one of
static or dynamic policy.

Preemptive vs. Nonpreemptive:

� Preemptive – once job has started executing, scheduler can still preempt it and move somewhere else.
Transfer of a partially executed task is expensive due to collection of task’s state.

� Nonpreemptive – only transfer tasks that have not begun execution.

� Preemptive schedulers are more flexible but complicated.

Centralized vs. Decentralized:

� Centralized – queue makes decision to send a job globally.

� Decentralized – queue makes decision locally.

Stability: In queuing theory, the arrival rate should be less than system capacity or else the system will
become unstable. When arrival rate is reaching system capacity, machines don’t want incoming jobs and
sends jobs off to other machines which also doesn’t want them. Lots of processes are being shuffled around
and nothing gets done. Queue starts building up, job floats around, system gets heavily loaded.

6.6.3 Components of scheduler

Distributed scheduling policy has 4 components to it.

i. Transfer policy determines when to transfer a process to some remote machine. Threshold-based
transfer policies are commonly used to classify nodes as senders, receivers, or OK.

ii. Selection policy determines which task should be transferred from a node. The simplest is to select
a newly arrived task that have caused the node to become a sender. Moving processes that have already
started executing is more complicated and expensive. The task selected for transfer should be such so that
the overhead from task transfer is compensated by a reduction in task’s response time.

iii. Location policy determines where to transfer the selected task. This is done by polling (serially or in
parallel). A node can be selected for polling randomly, based on information from previous polls, or based
on nearest-neighbor manner.

iv. Information policy determines when and from should above information of other nodes be collected -
demand-driven, periodic, or state-change-driven - so that the scheduler can make all of its decisions in the
right way.
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6.6.4 Sender-initiated distributed scheduler policy

Figure 6.7: A sender-initiated distributed scheduler policy.

Overloaded node attempts to send tasks to lightly loaded node.

� Transfer policy: CPU queue threshold, T, for all nodes. Initiated when a queue length exceeds T.

� Selection policy: newly arrived tasks.

� Location policy:

– Random: select a random node to transfer the task. The selected node may be overloaded and
need to transfer the newly arriving task out again. Is effective under light load conditions.

– Threshold: poll nodes sequentially until a receiver is found or poll limit has been reached. Transfer
task to the first node below threshold. If no receiver is found, then the sender keeps to the task.

– Shortest: poll NP nodes in parallel and choose least loaded node below T. Marginal improvement.

There are more sophisticated approaches of finding the node, as the above trivial approaches are not
scalable for a high number of nodes. One such approach is, every machine keeps a table which stores
the load of other machines. Whenever load on a machine changes, it updates the tables stored in
other nodes. In this case the location policy is just a table lookup. The other way to achieve it is to
elect a coordinator which maintains the loads of all other nodes, so now there is a central table which
maintains the load of other nodes.

� Information policy: demand-driven, initiated by the sender.

� Stability: Unstable at high-loads

6.6.5 Receiver-initiated distributed scheduler policy

Underloaded node attempts to receive tasks from heavily loaded node.

� Transfer policy: when departing process causes load to be less than threshold T, node goes find
process from elsewhere to take on.

� Selection policy: newly arrived or partially executed process.

� Location policy:

– Random: randomly poll nodes until a sender is found, and transfer a task from it. If no sender is
found, wait for a period or until a task completes, and repeat.

– Threshold: poll nodes sequentially until a sender is found or poll limit is reached. Transfer the
first node above threshold. If none, then keep job.

– Shortest: poll n nodes in parallel and choose heaviest loaded node above T.

� Information policy: demand-driven, initiated by the receiver.

� Stability: At high loads, a receiver will find a sender with a small number of polls with high-probability.
At low-loads, most polls will fail, but this is not a problem, since CPU cycles are available.
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6.6.6 Symmetrically-initiated distributed scheduler policy

Sender-initiated and receiver-initiated components are combined to get a hybrid algorithm with the advan-
tages of both. Nodes act as both senders and receiver. Average load is used as threshold. If load is below
the average load, node acts as receiver. If load is above average threshold, node acts as sender.

Figure 6.8: A symmetric policy.

Improved versions exploit polling information to maintain sender, receiver, and OK nodes. Sender polls node
on receiver list while receiver polls node on sender list. The nodes with load above Upper Threshold(UT)
becomes a sender nodes, whereas nodes with load below Lower Threshold (LT) become the receiver nodes.

Figure 6.9: An improved symmetric policy.

Q: Isn't there communication overhead?

A: Some; can broadcast your node and keep a table every minute or every time load changes.

Q: How to pick threshold?

A: That's configurable parameter; policy doesn't care.

6.7 Case Study

6.7.1 V-System (Stanford)

Following a state-change driven information policy, the V-System broadcasts information when there is
significant change in CPU/memory utilization. Nodes would listen to the broadcast and keep a load table.

The V-System also implements a sender-initiated algorithm which maintains a list of M least loaded nodes.
While off-loading, it probes a possible receiver randomly from M and transfers job only if it is still a receiver.
When locating a node to receive job transferal, the system needs to double check whether the node on the
list of M least loaded nodes is still a receiver because the load table is typically not updated super frequently
unless policy did on-demand polling. One job is off-loaded at a time.
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6.7.2 Sprite (Berkeley)

Sprite assumes a workstation environment in which ownership is king. When users are on their desktop they
own it, and no other tasks will run on it. Other tasks can only run on desktops when there is no user using
it. Like V-System, Sprite also uses state-change driven information policy and implements a sender-initiated
scheduling algorithm.

There is a centralized coordinator which keeps the status of load on all the machines. They made an
assumption that if there is no mouse or keyboard activity for 30 seconds and the number of active processes
is less than a threshold meaning there is at least one processor idle the node becomes a receiver. Foreign
processes get terminated when the user returns.

Sprite implemented process migration so that the process can suspend running job on a node and continue
running from its last state at some other node, instead of killing and restarting the job. Process migration
first stops a running job, writes out all registers and memory contents to disk, and transfers the entire
memory contents as well as kernel state to receiver machine. Process migration is fairly complicated and
comes with many problems e.g. I/O, network communication. Sprite comes at restriction and can only
migrate certain types of process.

How does process migration works? It says process is a program executing in memory. To migrate the
process, take the memory contents and move it to another machine. Since there is no shared memory, we
use the distributed file system as intermediary.

Steps:

1. Suspend the execution of the process, so that its memory contents no longer change.

2. Copy the contents from memory to disk.

3. On the other machine, start paging in. Since the file system is shared and not the memory, we can load
the process into receiver’s memory.

Q: Are the jobs exclusively CPU, or they can do I/O too?

A: They can do I/O. There is filesystem shared across all machines in some centralized server.

Q: What if everybody goes to lunch (leave the machine idle) and comes back to work (use machine) at the
same time?

A: There can be a queue of jobs awaiting execution, so they can be run on idle nodes when users are away.

6.7.3 Condor (U. of Wisonsin)

Condor makes use of idle cycles on workstations in a LAN. It can be used to run large batch jobs and
long simulations. It has a central job management system, called the condor master, which idle machines
contact to get assigned waiting jobs. It supports process migration and flexible job scheduling policies. The
SLURM scheduler on UMass Swarm cluster is an example of this paradigm.

Condor is not an OS, it is a software framework which runs over OS.
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6.7.4 Volunteer Computing

Volunteer computing is based on the idea that PCs on the internet can volunteer to donate CPU cy-
cles/storage when not in use and pool resources together to form an internet scale operating system. A
coordinator partitions a large job into small tasks and sends them to the volunteer nodes.

Reliabilty is an issue here. So instead of relying on a single machine, the same subtask in run on k different
machines and it is made sure that the answer matches. Seti@home, BOINC and P2P backups are examples
for this paradigm.


