
Lecture 2, page

Distributed System Architectures

1

• Architectures for distributed systems

– Part 1: Architectural styles

– Part 2: Client-server architectures

– Part 3: Decentralized, peer-to-peer, and other architectures

Lecture 2, page CS677: Distributed OS

Part 1: Architectural Styles

2

• Important styles of architecture for
distributed systems
– Layered architectures
– Object-based architectures
– Data-centered architectures
– Event-based architectures
– Resource-based architectures

Lecture 2, page

Layered Design

3

• Each layer uses previous layer to implement new functionality
that is exported to the layer above

• Example: Multi-tier web apps

Lecture 2, page

Object-based Architecture

4

• Each object corresponds to a components
• Components interact via remote procedure calls

– Popular in client-server systems

Lecture 2, page

Event-based architecture

5

• Communicate via a common repository
– Use a publish-subscribe paradigm
– Consumers subscribe to types of events
– Events are delivered once published by any publisher

Lecture 2, page

Shared data-space

6

• “Bulletin-board” architecture
– Decoupled in space and time
– Post items to shared space; consumers pick up at a later time

Lecture 2, page

Resource-oriented Architecture

7

• Example of ROA:Representational State Transfer (REST)
– Basis for RESTful web services
– Resources identified through a single naming scheme
– All services offer same interface (e.g., 4 HTTP operations)
– Messages are fully described
– No state of the caller is kept (stateless execution)
– Example: use HTTP for API

• http://bucketname.s3.aws.com/objName
• Get / Put / Delete / Post HTTP operations

– Return JSON objects
{"name":"test.com","messages":["msg 1","msg 2","msg 3”],"age":100}

– Discuss: Service-oriented (SOA) vs. Resource-oriented (ROA)

Lecture 2, page

OOA vs. ROA vs. SOA

8
Courtesy: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/3-arch-styles.pdf

Lecture 2, page

End of Part 1

9

• Reminder: No laptop or phone use during class. Masks
mandatory.

• Career Fair on Feb 24th

Lecture 2, page

Part 2: Client-Server Architectures

10

• Most common style: client-server architecture
• Application layering

• User-interface level
• Processing level
• Data level

Lecture 2, page

Search Engine Example

11

• Search engine architecture with 3 layers

Lecture 2, page

Multitiered Architectures

12

• The simplest organization is to have only
two types of machines:

• A client machine containing only the
programs implementing (part of) the user-
interface level

• A server machine containing the rest,
– the programs implementing the processing

and data level

Lecture 2, page

A Spectrum of Choices

13

• From browser-based to phone-based to desktop apps

Lecture 2, page

Three-tier Web Applications

14

• Server itself uses a “client-server” architecture
• 3 tiers: HTTP, J2EE and database

– Very common in most web-based applications

Lecture 2, page

Edge-Server Systems

15

• Edge servers: from client-server to client-proxy-server
• Content distribution networks: proxies cache web

content near the edge
• Evolved into edge computing model

Lecture 2, page

Part 3: Decentralized Architectures

16

• Peer-to-peer systems
– Removes distinction between a client and a server
– Overlay network of nodes

• Chord: structured peer-to-peer system
– Use a distributed hash table to locate objects

• Data item with key k -> smallest node with id >= k

Lecture 2, page

Content Addressable Network (CAN)

17

• CAN: d-dimensional coordinate system
– Partitioned among all nodes in the system
– Example: [0,1] x [0,1] space across 6 nodes

• Every data item maps to a point
• Join: pick a random point, split with node for that point
• Leave: harder, since a merge may not give symmetric partitions

Lecture 2, page

Unstructured P2P Systems

18

• Topology based on randomized algorithms
– Each node pick a random set of nodes and becomes their

neighbors
• Gnutella

– Choice of degree impacts network dynamics

Lecture 2, page

SuperPeers

19

• Some nodes become “distinguished”
– Take on more responsibilities (need to have or be willing to

donate more resources)
– Example: Skype super-peer in early Skype

Lecture 2, page

Collaborative Distributed Systems

20

• BitTorrent: Collaborative P2P downloads
– Download chunks of a file from multiple peers

• Reassemble file after downloading
– Use a global directory (web-site) and download a .torrent

• .torrent contains info about the file
– Tracker: server that maintains active nodes that have requested chunks
– Force altruism:

» If P sees Q downloads more than uploads, reduce rate of sending to Q

Lecture 2, page

Autonomic Distributed Systems

21

• System is adaptive - self-managing systems
– Monitors itself and takes action autonomously when needed

• Autonomic computing, self-managing systems
• Self-*: self-managing, self-healing
• Example: automatic capacity provisioning

– Vary capacity of a web server based on demand

Monitor
workload

Compute current/
future demand Adjust allocation

Lecture 2, page CS677: Distributed OS

Feedback Control Model

22

• Use feedback and control theory to design a self-
managing controller

– Can also use machine learning or reinforcement learning

