
Lecture 6, page Computer Science

Today: System and Kernel Calls

- System calls 

- System calls in Minix 

- Kernel calls in Minix 

- Lab 1: implementing system and kernel calls

1CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

System Calls
• Programming interface to the services provided by the OS 
• Typically written in a high-level language (C or C++) 
• Mostly accessed by programs via a high-level Application Program Interface 

(API) rather than direct system call use 
• Three most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (including virtually all versions of UNIX, Linux, and Mac OS X), 
and Java API for the Java virtual machine (JVM) 

• Why use APIs rather than system calls?

2CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Standard C Library Example
• C program invoking printf() library call, which calls write() system call

3CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Example of Standard API
• Consider the ReadFile() function in the 
• Win32 API—a function for reading from a file�
�
�
�

�
�
�

• A description of the parameters passed to ReadFile() 
– HANDLE file—the file to be read 
– LPVOID buffer—a buffer where the data will be read into and written from 
– DWORD bytesToRead—the number of bytes to be read into the buffer 
– LPDWORD bytesRead—the number of bytes read during the last read 
– LPOVERLAPPED ovl—indicates if overlapped I/O is being used

4CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Generic System Call Implementation
• A single hardware operation such as TRAP raises the priority 

level and begins execution from a table of functions specified at 
boot time 

• TRAP has an integer parameter, and the system call number. 
• parameters to the system call are on the stack or in registers 
• The kernel source includes a large table of functions, together 

with a limit specifying the maximum value of the trap parameter 
• These functions may be defined anywhere in the kernel

5CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

System Call Implementation

• Typically, a number associated with each system call 
– System-call interface maintains a table indexed according to these numbers 

• The system call interface invokes intended system call in OS kernel and 
returns status of the system call and any return values 

• The caller need know nothing about how the system call is implemented 
– Just needs to obey API and understand what OS will do as a result call 
– Most details of  OS interface hidden from programmer by API   

• Managed by run-time support library (set of functions built into libraries included 
with compiler)

6CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

API – System Call – OS Relationship

7CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

System Call Parameter Passing

• Often, more information is required than simply identity of desired 
system call 

– Exact type and amount of information vary according to OS and call 
• Three general methods used to pass parameters to the OS 

– Simplest:  pass the parameters in registers 
•  In some cases, may be more parameters than registers 

– Parameters stored in a block, or table, in memory, and address of block passed as a 
parameter in a register  

• This approach taken by Linux and Solaris 
– Parameters placed, or pushed, onto the stack by the program and popped off the stack 

by the operating system 
– Block and stack methods do not limit the number or length of parameters being passed

8CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

What is POSIX 

• Portable Operating System Interface, is a family of 
standards specified by the IEEE for maintaining 
compatibility between operating systems 

• POSIX defines the application programming interface 
(API), along with command line shells and utility 
interfaces, for software compatibility with variants of Unix 
and other operating systems.

9CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Example of Posix Calls

• Calls in POSIX include: 
– networking calls such as socket, connect, bind, listen, accept, 

send, recv, shutdown, 
– calls for mapping files to memory, such as void * mmap(void 

*start, size_t length, int prot, int flags, int 
fd, off_t offset)and int munmap(void *start, size_t length) 

– posix threads calls such as pthread_create–poll or select to 
check open file descriptors for I/O availability

10CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Posix calls
• may be implemented as system calls or library functions 
• include generic math and string functions 
• For a complete list, see the link 

– https://pubs.opengroup.org/onlinepubs/009695399/index.html 

11CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Back to Minix
Remember: 

 Minix3 is layered

12CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Key Minix System Calls
• Process management: fork, wait and waitpid, 

execve, exit, brk, getpid. 
• Signal handling: sigaction, sigpending, kill, 

alarm, pause. 
• time: time, stime, times.

13CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Key Minix System Calls
• File management: open, creat, mknod, close, read, 

write, seek, stat and fstat, dup2, pipe, access, 
rename, fcntl, ioctl 

• Directory and file system management: mkdir, rmdir, 
link, unlink (remove), mount, umount, chdir, 
chroot. 

• Protection: chmod, getuid, setuid, chown.

14CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Full list of System Calls
minix/include/minix/callnr.h

15CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Recap
• Multiserver Operating System  

– Run device drivers outside the kernel  
– Many OS components also run as user-level 

processes

16CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Recap
• No direct link from User to Kernel except via servers or 

drivers!

17CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Minix System Call Implementation
• No way directly from user to kernel except via servers! 

– TRAP goes into the kernel as before, but there is 
effectively only one true system call (more later) 

– The caller’s stack/registers have parameters indicating 
which function to call in which server 

– each server has its own set of system calls 
• the file system server provides system calls for 

accessing files 
• the process manager manages processes

18CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Minix System Calls
• In Minix some system calls just map the call to another kernel calls. For 

example fork is created in the process manager and mapped to 
SYS_FORK 

– System Calls implementation lies in servers 
– Kernel Call implementation lies in kernel/system

19CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

A Syscall life in Minix: fork as an example

• User calls fork() 
• A TRAP occurs, but that trap goes to the Process 

Management server

20CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

A Syscall life in Minix: fork as an example

21CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

But how to get the Syscall number?
minix/sys/sys/syscall.h 

• An automatically generated file 
– Remember, Minix is now POSIX compatible!

22CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

System and Kernel Calls

• Control moved to the server 
• One of two scenarios, depending on syscall 

– Server implements the entire syscall, with no further calls to the 
kernel 

– Server needs to invoke/change/set something in the kernel 
• fork() needs to call the kernel! 

– Thus, the long route!

23CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

fork() in Minix: do_fork()

• Actual fork implementation in minix/kernel/system/
do_fork.c 

• The actual pipeline 
– User calls fork(2) (definition in minix/lib/libc/sys-minix/fork.c) 
– This in turn calls  _syscall() to call the correct server + the correct 

function (definition in minix/lib/libc/sys-minix/syscall.c) 
– _syscall calls sendrec (defined in include/minix/ipc.h) 
– Finally, sendrec calls the interrupt vector using _do_kernel_call_orig 

which is a function that is architecture dependent, (for example 
implementation in lib/libc/arch/i386/sys-minix/_ipc.S) 

• Traps into the kernel 
• passes the message pointer to kernel in the %eax register

24CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Notes

• Most communication between different servers, kernel and 
servers, and any subsystems is done via the predefined 
constants in  minix/include/minix/com.h 

• But a fork does not deal with just the process 
– Memory needs to be managed

25CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

A high-level call graph for fork

26CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Kernel Calls
• Some system calls have a corresponding kernel call 

• fork() and sys_fork 

• But reverse is not true 

• Some kernel call meant for “internal” operations between kernel and 
system processes 

•  sys_devio() kernel call to read or write I/O ports 

• kernel call invoked by a device driver 

• Message/IPC primitives: send, receive, notify can be thought of a type 
of kernel call

27CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Kernel Calls
• Kernel calls and IPC are restricted to system processes 

• System calls can be invoked by user processes 

• /usr/system.conf   is the config file that describes restrictions

28CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Lab 1
• Goal: How to implement a system call, a kernel call and a system 

process?   

• Handed out in GitHub Classroom 

• Turn in via GitHub 

• Kernel programming  

• Expect kernel panics!

29CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Lab 1

• Class motto:  

• “Your kernel may panic, but you shouldn’t” 

• Lab 1: A Gentle Introduction to Kernel Programming 

• Part 1: Highly-scripted guided tour 

• Part 2: Use part 1 to complete assignment
30CS577: Operating System Design and Implementation



Lecture 6, page Computer Science

Part 1

• “Guided tour” to implement a system call, a kernel call and a server 
process 

– Be sure to complete all the steps to understand how all of these work 
– Code and instructions are  in the “samples” folder 
–

31CS577: Operating System Design and Implementation

Lecture 6, page Computer Science

Part 2

• Implement a new Minix server:  calc()  
– implements two services: add() and multiply 
– add() is a system call and handled by calc() in user space 
– multiply() is a system call and also a kernel call.   

• user process calls multipy(), which comes to calc() 
• calc() invokes kernel call for multiply() to get result and return results 

to user process.

32CS577: Operating System Design and Implementation


