
CMPSCI 677 Distributed & Operating Systems Spring 2019

Lecture 20: April 22
Lecturer: Prashant Shenoy Scribe: Anirudha Desai(2017), Aggrey Muhebwa(2019)

20.1 Announcements

The final exam is on Friday next week, 5/3/2019. It will be a take home exam and you can use any material
on the internet, but you have to cite the sources that you’ll use. The solutions can either be typeset or
handwritten and then scanned. The exam is 24 hours and the solutions will be uploaded to gradescope.

20.2 Distributed File Systems

The class was primarily about stand-alone(UNIX) file systems.

There are many file systems. Linux can read many file systems. But windows on the other hand has its own
proprietary file systems and cannot read linux file system. A FS manifests as files and directories.

A file is a named collection of logically related data. OS has no way to interpret the files. It is the application’s
job to interpret the file. A file system :

1. Provides a logical view of data and storage functions

2. User-friendly interface

3. Provides facility to create , modify , organize, and delete files.

4. Provides sharing among users in a controlled manner - Permissions can be granted on files to specific
users.

5. Provides protection

A directory is an index of filess contained in a folder.

20.2.1 UNIX File System review

A user file is a linear array of bytes. A file structure is a directed acyclic graph as shown in fig 20.1.

But the operating system does not interpret English. It only understands numbers. Every directory/file has
an associated number in its metadata. This number is the inode number. The OS can understand this inode
number. All inodes are stored at a special location on disk [super block]. Within a file structure, directories
may not be shared, but files may be. Shared in this context means links. 2 files can be linked to the same
inode number. There can be a hard link or a soft link (shortcuts to a file). But directories cannot have links
because we can end up with a cycle when a child directory has a hard link back to its parent directory.

20-1



20-2 Lecture 20: April 22

Figure 20.1: Typical file structure

Inodes store file attributes and a multi-level index that has a list of disk block locations for the file. As
shown in figure 20.2, there are multiple levels of indirection used to point to different blocks of a file. In this
multi-level index format, we can technically store 11 ∗ 1024 ∗ 1024 ≈ 4gb
file. It should be noted that this is one way of implementing a FS. There are many other ways.

20.2.2 Inode structure

The following fields comprise the inode number : mode, owne id, dir file, protection bits, last access time,
last write time, last inode time, size, ref cnt and Address[0]...Address[14] with mulit-level index.

20.2.3 Distributed File Systems (DFS)

So far, the class was about single FS. A DFS is more complicated. A Distributed File System consists of
two major parts;

1. File service which is a specification of what the file system offers, e.g client primitives, APIs, etc

2. File server which is a process that implements the file service. A single Machine can heve several
servers (UNIX, DOS) running on it

20.2.3.1 File Service

2 types : The slides could be referred for diagrammatic representation.

1. Remote access model : Work done at server. It is a stateless server. Server may be a bottleneck.



Lecture 20: April 22 20-3

Figure 20.2: inode multi level index

The client needs to send RPC to server for every action. The file is stored on the server. There is
excessive communication happening in this model. The server needs to maintain the state to know the
status of communication with a client.

2. Upload/download model : Work done at client. It is a stateful server. Simple functionality. Moves
files/blocks, need storage.

The server moves the files from local storage to client storage. The client performs the processes and
pushes the file back to server. This makes the server stateless. This is very slow in the beginning in
order to load the file.
Question: In the upload/Download model, what happens when there is concurrent access to the same
files ?
Answer: Do not make the two concurrent process copy the original file as they will overwrite each
others’ changes. The solution is to have your clients send all their requests to the server and make
changes from there.

20.2.3.2 System Structure: Server Type

Stateless server

1. No information is kept at the server in between client requests

2. All information need to service a request must be provided by the client with each request

3. More tolerant to server crashes

Stateful server

1. Server maintains information about client accesses

2. Shorted request messages

3. Better performance

4. consistency is easy to achieve



20-4 Lecture 20: April 22

20.2.4 NFS Architecture

The NFS architecture is shown in fig 20.3.

Most widely used distributed file system that uses a virtual file system layer to handle local and remote
files.

Figure 20.3: NFS Architecture

Either the data is on local FS or the data is on another machine. Then we go through the NFS. The NFS,
as can be seen from the figure, is essentially an add-on to the OS.
Question:What is the system call layer in the NFS architecture ?
Answer: This is an interface that the operating system is exporting to the application.
It should be noted that the NFs is just a layer that sits on top of the regular file system, but is not a file
system in itself.
Question: Is the server stub going to aler the client when there are is a set of files available ?
Answer: NFS likes like any other file system. You send a specific request to the server and you get an
equally specific response depending on whether the file exists or not.

20.2.4.1 NFS Operations

The basic NFS operations can be referred on the slides. The highlights here are that the v3 NFS was stateless
where v4 is stateful. Open and Close were not present in v3 because it was stateless. These operations are
present in v4.
The server exports the directory that will be mount on that client so as to be accessed locally, similar to
how a network drive is set up in windows.
Question: If NFS V3 is stateless, what happens to the server if you mount 1000 volumes ?
Answer: We are obtaining client resources, not server resources so it has a little to no impact.
Question: How do you handle duplicates on the local system and the server ?
Answer: NFS won’t handle duplicates for you. However, since they are mounted at different mount points,
they will have different paths.



Lecture 20: April 22 20-5

20.2.4.2 Communication

The communication between client and server between v3 and v4 of NFS is represented in fig 20.4

Figure 20.4: communication in NFS

In v3, the client takes the open call and does a lookup. If the file exists, server returns the lookup name.
The client then sends a read call.
In v4, a bunch of calls can be sent like lookup, open and read. The server performs all the actions and
returns to client. The v4 is faster because of lesser round trip time.

20.2.4.3 Naming: Mount Protocol

Mounting tells the OS about where to put the external storage like USB etc. The OS takes care of the
mapping. Users can access remote files using local names.

20.2.4.4 Automounting

In a multiuser setting, 2 different users can share data together. In v3, mounting mounts everything the
NFS has access to. But, with automounting, the user can mount exactly what is needed. It is basically,
mount on demand.



20-6 Lecture 20: April 22

Figure 20.5: Mandatory attributes for NFS

20.2.4.5 File Attributes

The attributes in fig 20.5 is mandatory for every FS. With v4, there were additional attributes that are
recommended which are listed in fig 20.6

Figure 20.6: Recommended attributes for NFS

20.2.4.6 Semantics of File Sharing

If a file is shared among users concurrently, it is necessary to define the semantics of reading and writing.
The semantics which enforces an absolute ordering on file reads and writes is known as UNIX semantics.
This semantics is generally desirable as it avoids inconsistency issues across different users. However, for a
distributed system, Unix semantics can only be achieved if there is one file server and clients do not cache
files. A no cache policy, for a distributed file system, can cause serious performance issues. Hence weaker
semantics are adopted. By allowing clients to update in local caches might create inconsistent versions of files
across users. For example, if a client locally modifies a cached file and shortly thereafter another client reads
the file from the server, the second client will get an obsolete file. To avoid these issues, a weaker semantics
known as Session semantics is adopted. In this semantics, only when the file is closed the changes are
made visible to other clients. A description of different file sharing semantics is shown in Figure 20.7.



Lecture 20: April 22 20-7

Figure 20.7: Different File sharing semantics

Question: Does the NFS support horizontal partitioning ?
Answer: NFS just mounts the already partitioned volumes (which is usually done by the systems adminis-
trator )

20.2.4.7 File Locking in NFS

Figure 20.8: NFSv4 operations related to file locking

NFS allows clients to use locking at a file system level. Locking can also be enabled for a a particular section
of a file. Typically applications for databases and emails use file system level locking. Locking was not part
of NFS until version 3. NFS v4 supports locking as part of the protocol. A description of several file locking
operations of NFS v4 is shown in Figure 20.8.
Question: Can you implement a lock by creating a lock file on the disk ?
Answer: Yes, you can, but you have to make sure that access to that file is atomic.
Question: How does client caching that supports open delegation handle failures ? Answer: This is not
resilient to failure. If failure occurs, changes will be lost.

20.2.4.8 Client Caching

NFS does not enforce any caching policy to clients. Figure 20.9 depicts the client side implementation of
caching in NFS. The client talks to memory cache and then to disk cache to access a file. If the file is not present
in the caches, then the request is forwarded to the NFS server over RPC call. NFS by default implements



20-8 Lecture 20: April 22

Figure 20.9: Client side caching in NFS

Figure 20.10: File delegation in NFS v4



Lecture 20: April 22 20-9

remote access file service model. NFS v4 extends this architecture to accommodate upload/download file
service model as well. If a single client is connected to the file server, the server delegates the master file to
the client. All read/write operation occurs at the delegated copy. This is known as File Delegation. When
the file is closed or when the server recalls the delegation, the delegated file is sent back to the server. The
overall file delegation procedure is depicted in Figure 20.10.

20.2.4.9 RPC Failures

Figure 20.11: RPC retransmissions using a duplicate request cache

For NFS request over UDP, both the client and the server have to implement timeout and retransmission
mechanism due to unreliability of UDP protocol. Generally RPC file service model is adopted. Retrans-
mitting an RPC request requires the RPC operation to be idempotent i.e. any number of execution of
the same RPC request should produce same result. Idem-potency is achieved through a duplicate-request
cache. Each RPC is assigned a transaction Id. The cache stores the results for a transaction. When ever
a RPC request comes, it is first checked with the cache. If a cache hit occurs, the result is returned. If
not, the transaction is executed, the cache is updated and the result is returned back. Figure 20.11 depicts
retransmissions of RPC requests using a duplicate request cache.

20.2.4.10 Handling re-transmissions

Use a duplicate request cache if;The request is still in progress, the reply has just been returned or the reply
has been some time ago, but was lost

20.2.4.11 Security

Secure RPC is used in NFS v4. NFS V4 , all client server communications are encrypted.



20-10 Lecture 20: April 22

20.2.4.12 Replica servers

NFS v4 supports replication of servers. This is implementation specific.


