
Computer Science Lecture 17, page CS677: Distributed OS

Epidemic Protocols

• Used in Bayou system from Xerox PARC
• Bayou: weakly connected replicas

– Useful in mobile computing (mobile laptops)
– Useful in wide area distributed databases (weak connectivity)

• Based on theory of epidemics (spreading infectious diseases)
– Upon an update, try to “infect” other replicas as quickly as possible
– Pair-wise exchange of updates (like pair-wise spreading of a disease)
– Terminology:

• Infective store: store with an update it is willing to spread
• Susceptible store: store that is not yet updated

• Many algorithms possible to spread updates

!1

Computer Science Lecture 17, page CS677: Distributed OS

Spreading an Epidemic

• Anti-entropy
– Server P picks a server Q at random and exchanges updates
– Three possibilities: only push, only pull, both push and pull
– Claim: A pure push-based approach does not help spread updates quickly (Why?)

• Pull or initial push with pull work better
• Rumor mongering (aka gossiping)

– Upon receiving an update, P tries to push to Q
– If Q already received the update, stop spreading with prob 1/k
– Analogous to “hot” gossip items => stop spreading if “cold”
– Does not guarantee that all replicas receive updates

• Chances of staying susceptible: s= e-(k+1)(1-s)

!2

Computer Science Lecture 17, page CS677: Distributed OS

Removing Data

• Deletion of data items is hard in epidemic protocols
• Example: server deletes data item x

– No state information is preserved
• Can’t distinguish between a deleted copy and no copy!

• Solution: death certificates
– Treat deletes as updates and spread a death certificate

• Mark copy as deleted but don’t delete
• Need an eventual clean up

– Clean up dormant death certificates

!3

Computer Science Lecture 17, page CS677: Distributed OS

Implementation Issues

• Two techniques to implement consistency models
– Primary-based protocols

• Assume a primary replica for each data item
• Primary responsible for coordinating all writes

– Replicated write protocols
• No primary is assumed for a data item
• Writes can take place at any replica

!4

Computer Science Lecture 17, page CS677: Distributed OS

Remote-Write Protocols

• Traditionally used in client-server systems (no replication)

!5

Computer Science Lecture 17, page CS677: Distributed OS

Remote-Write Protocols (2)

• Primary-backup protocol
– Allow local reads, sent writes to primary
– Block on write until all replicas are notified
– Implements sequential consistency

!6

Computer Science Lecture 17, page CS677: Distributed OS

Local-Write Protocols (1)

• Primary-based local-write protocol in which a single copy is migrated between
processes.

– Limitation: need to track the primary for each data item

!7

Computer Science Lecture 17, page CS677: Distributed OS

Local-Write Protocols (2)

• Primary-backup protocol in which the primary migrates to the
process wanting to perform an update

!8

Computer Science Lecture 17, page CS677: Distributed OS

Replicated-write Protocols
• Relax the assumption of one primary

– No primary, any replica is allowed to update
– Consistency is more complex to achieve

• Quorum-based protocols
– Use voting to request/acquire permissions from replicas
– Consider a file replicated on N servers

• NR+NW > N NW > N/2
– Update: contact NW servers and get them to agree to do update

(associate version number with file)
– Read: contact NR and obtain version number

• If all servers agree on a version number, read

!9

Computer Science Lecture 17, page CS677: Distributed OS

Gifford’s Quorum-Based Protocol

• Three examples of the voting algorithm:
a) A correct choice of read and write set
b) A choice that may lead to write-write conflicts
c) A correct choice, known as ROWA (read one, write all)

!10

Computer Science Lecture 17, page CS677: Distributed OS

Replica Management

• Replica server placement
– Web: geophically skewed request patterns
– Where to place a proxy?

• K-clusters algorithm
• Permanent replicas versus temporary

– Mirroring: all replicas mirror the same content
– Proxy server: on demand replication

• Server-initiated versus client-initiated

!11

Computer Science Lecture 17, page CS677: Distributed OS

Content Distribution

• Will come back to this in Chap 12

• CDN: network of proxy servers
• Caching:

– update versus invalidate
– Push versus pull-based approaches
– Stateful versus stateless

• Web caching: what semantics to provide?

!12

Computer Science Lecture 17, page CS677: Distributed OS

Final Thoughts

• Replication and caching improve performance in
distributed systems

• Consistency of replicated data is crucial
• Many consistency semantics (models) possible

– Need to pick appropriate model depending on the application
– Example: web caching: weak consistency is OK since humans

are tolerant to stale information (can reload browser)
– Implementation overheads and complexity grows if stronger

guarantees are desired

!13

Computer Science Lecture 17, page CS677: Distributed OS

Fault Tolerance

• Single machine systems
– Failures are all or nothing

• OS crash, disk failures
• Distributed systems: multiple independent nodes

– Partial failures are also possible (some nodes fail)
• Question: Can we automatically recover from partial

failures?
– Important issue since probability of failure grows with number

of independent components (nodes) in the systems
– Prob(failure) = Prob(Any one component fails)=1-P(no failure)

!14

Computer Science Lecture 17, page CS677: Distributed OS

A Perspective

• Computing systems are not very reliable
– OS crashes frequently (Windows), buggy software, unreliable hardware,

software/hardware incompatibilities
– Until recently: computer users were “tech savvy”

• Could depend on users to reboot, troubleshoot problems
– Growing popularity of Internet/World Wide Web

• “Novice” users
• Need to build more reliable/dependable systems

– Example: what is your TV (or car) broke down every day?
• Users don’t want to “restart” TV or fix it (by opening it up)

• Need to make computing systems more reliable
– Important for online banking, e-commerce, online trading, webmail…

!15

Computer Science Lecture 17, page CS677: Distributed OS

Basic Concepts

• Need to build dependable systems
• Requirements for dependable systems

– Availability: system should be available for use at any given
time

• 99.999 % availability (five 9s) => very small down times
– Reliability: system should run continuously without failure
– Safety: temporary failures should not result in a catastrophic

• Example: computing systems controlling an airplane,
nuclear reactor

– Maintainability: a failed system should be easy to repair

!16

Computer Science Lecture 17, page CS677: Distributed OS

Basic Concepts (contd)

• Fault tolerance: system should provide services despite
faults
– Transient faults
– Intermittent faults
– Permanent faults

!17

Computer Science Lecture 17, page CS677: Distributed OS

Failure Models

• Different types of failures.

Type of failure Description

Crash failure A server halts, but is working correctly until it halts

Omission failure 
 Receive omission 
 Send omission

A server fails to respond to incoming requests 
A server fails to receive incoming messages 
A server fails to send messages

Timing failure A server's response lies outside the specified time interval

Response failure 
 Value failure 
 State transition failure

The server's response is incorrect 
The value of the response is wrong 
The server deviates from the correct flow of control

Arbitrary failure A server may produce arbitrary responses at arbitrary times

!18

Computer Science Lecture 17, page CS677: Distributed OS

Failure Masking by Redundancy

• Triple modular redundancy.

!19

