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14.1 Overview
This section covers the following topics:

Termination Detection
Leader Election : Bully Algorithm, Ring Algorithm, Elections in Wireless Networks

Mutual Exclusion : Centralized, Decentralized, Distributed algorithms

14.2 Distributed Snapshot Algorithm

We expect a reliable channel such that there is no packet loss and delivery is inorder. TCP gives us those
properties out of the box.

Any process can initiate Snapshot Algorithm.

e The initiater will checkpoint it’s local state (write memory in disk) and send marker message to every
outgoing outgoing channel.

e On receiving a marker message the process will checkpoint it’s state upon seeing the first marker and
send markers on outgoing channels, also it will save messages on all other incoming channels until
another marker is received for that channel.

Question: Do we stop executing when they write their state out?
Answer: While writing memory content we need to ensure that memory does not change. So it will take a
pause while writing memory content.

Question: Will this algorithm terminate?
Answer: If marker message don’t get lost then it is guaranteed that algorithm will terminate. We have
assumed that messages are not lost and they are delivered inorder.

Multiple snapshots may be in progress so each one is distinguished by tagging the marker with the initiator
ID (or sequence number). This algorithm guarantees consistent cut (distributed snapshot) without the need
of synchronization.

14.2.1 Snapshot Algorithm Example

(a) Organization of a process and channels for a distributed snapshot
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Figure 14.1: Depiction of Snapshot Algorithm

(b) Process Q receives a marker for the first time and records its local state
(¢) Q records all incoming message

(d) Q receives a marker for its incoming channel and finishes recording the state of the incoming channel

14.3 Termination Detection

In a distributed system, the processes might also need to detect when the distributed computation has
finished and it should terminate? The entire distributed computation is said to be finished when every
process in the computation has finished all the work assigned to it and there are no messages in transit.

The algorithm is similar to the distributed snapshot algorithm. There are two types of marker messages
here: Done and Continue. One of the processes acts as the initiator and sends a query to all of its neighbors
asking for their status:

Done: Done marker message is sent back by the receiver to its predecessor (the process it received the query
from) when it has no local job to do and all of its successors have replied with Done to it. In addition,
the process under consideration should also not have received any outstanding message after it’s checked its
local job queue, until all of the neighbors reply.

Continue: Continue is sent back to the predecessor if the process itself has some job to do or if any of its
successors have replied back with Continue to the process. Continue basically signals that the process, or
somebody that process is interacting with(successors), still has some unfinished task.

A process sends the marker messages back only after it has received replied from all its successors.

Once the initiator receives Done messages from all of its neighbors, it can then broadcast a terminate message
asking all the processes to close down.

14.4 Leader Election

Many tasks in distributed systems require one of the processes to act as coordinator. An example of this is the
Berkeley algorithm for clock synchronization in which the coordinator has to initiate the synchronization and
tell everybody else their offsets. A coordinator can be chosen amongst all processes through leader election.
Leaders can be elected manually by the developer(if they know certain machine to be more powerful), or we
can have automated leader elections. Automated leader elections are particularly handy in dynamic systems
where leaders (coordinators) may quit or crash and a new leader has to be elected. Another example is
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the unstructured P2P topology which have super-peers elected by a group of peers that wish to have a
coordinated process. Two of the automated algorithms are explained below:

14.4.1 Bully Algorithm

The bully algorithm is a simple algorithm, in which we enumerate all the processes running in the system
and pick the one with the highest ID as the coordinator (or the one with least load, or best node with best
bandwitdh, or some other metric). In this algorithm, each process has a unique id and every process knows
the corresponding ID and IP address of every other process. Any process in the system can initiate this
algorithm for leader election. Thus, we can have concurrent ongoing elections.

There are three types of messages for this algorithm: election, OK and I won. The algorithm is as follows:

e Say a process with id 4 initiates the election.
e It sends election messages to all process with id > ¢ and awaits OK messages

e If it receives no OK messages, it knows it is the highest id process in the system. It thus sends I won
messages to all other processes

o If it received OK messages, it knows it is no longer in contention and simply drops out and waits for
an I won message from some other process

e Any process upon receiving the election message returns an OK to its predecessor and starts an election
of its own by sending election to higher id processes

e Any process that receives I won message treats the sender of that message as coordinator
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Figure 14.2: Depiction of Bully Algorithm

An example of Bully algorithm is given in Figure 14.2.
Communication is assumed to be reliable during leader election. If the communication is unreliable, it
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may happen that the elected coordinator goes down after it being elected, or a higher id node comes up
after the election process. In the former case, any node might start an election process after gauging that
the coordinator isn’t responding. In the latter case, the higher id process asks its neighbors who is the
coordinator. It can then either accept the current coordinator as its own coordinator and continue, or it can
start a new election (in which case it will probably be elected as the new coordinator). This algorithm runs
in O(n?) time in the worst case when lowest ID process initiates the election and average case and O(n) time
in best case.

Question: What happens when we have a highly dynamic system where processes regularly leave and join
(P2P system)?

Answer: Bully’s algorithm is not adequate for all kinds of scenarios. If you have a dynamic system, you
might want to take into account the more stable processes (or other metrics) and give them higher ids to
have them win elections.

14.4.2 Ring Algorithm

The ring algorithm is similar to Bully’s algorithm in the sense that we assume the processes are already
ranked through some metric from 1 to n. However, here a process i only needs to know the IP addresses of
its two neighbors (i+1 and i-1). We want to select the node with the highest id. The algorithm works as
follows:

e Any node can start circulating the election message. Say process i does so. We can choose to go
clockwise or counter-clockwise on the ring. Say we choose clockwise where i+1 occurs after i
e Process i then sends an election message to process i+1

e Anytime a process j(# i) receives an election message, it piggybacks its own id (thus declaring that it
is not down) before calling the election message on its successor (j+1)

e Once the message circulates through the ring and comes back to the initiator i, process i knows the
list of all nodes that are alive. It simply scans the list and chooses the highest id.

e It lets all other nodes about the new coordinator.
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Figure 14.3: Depiction of Ring Algorithm

An example of Ring algorithm is given in Figure 14.3.
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If the neighbor of a process is down, it sequentially polls each successor (neighbor of neighbor) until it finds
a live node. For example, in the figure, when 7 is down, 6 passes the election message to 0. Another thing
to note is that this requires us to enforce a logical ring topology on the underlying application, i.e. we need
to construct a ring topology on top of the whole system just for leader election.

Question: How does 6 know that it has to send message to 0 when 7 is down?

Answer: Here we can assume that every node not only has information of its neighbors, but neighbors’
neighbors as well. In general, in a system where we expect a max of k nodes to go down during the time
leader election takes to execute, each node needs to know at least k successive neighbors in either direction.
This is still less than what each node needs to know in Bully algorithm.

Ring algorithm always takes 2(n-1) messages to execute. First (n-1) is during the election query and second
time to announce the results of the election. It is easy to extend ring algorithm for other metrics like load
etc.

Question: How do you know a node is not responding?

Answer: If it has actually crashed then TCP will fail while setting up socket connection. Otherwise, it
can be a slow machine which is taking time. It is a classical problem in distributed systems to distinguish
between a slow process and a failed process which is a non-trivial problem. Timeout is not an ideal solution
but can be used in practice.

14.4.3 Elections in Wireless Networks

In wireless networks, every node is not in the range of other nodes, and hence even though the whole system
is connected, some nodes may not be able to communicate with others. In such a case, the initiator sends a
broadcast election message to all its neighbors, and waits for replies from all other nodes. Each node upon
receiving such a message broadcasts the election message to all its neighbors. When each such node sends
back its response, it attaches its load/capacity and its id on the response. The initiator upon receiving the
capacities of all nodes simply picks the one with the highest capacity and declares that node as the leader.

In Skype, a group of peers elect a super-peer. This elected super-peer was required to have adequate capacity
to handle all the requests for that group and adequate network bandwidth. The Skype framework also took
the stability of a node into account while electing super-peers, since it wanted to avoid the overhead of
repeated leader elections.

14.5 Mutual Exclusion

Everytime we wish to access a shared data structure or critical section in a distributed system, we need to
guard it with a lock. A lock is acquired before the data structure is accessed, and once the transaction has
completed, the lock is released.

14.5.1 Centralized Mutual Exclusion

In this case, locking and unlocking coordination is done by a master process. All processes are numbered 1
to n. We run leader election to pick the coordinator.

Now, if any process in the system wants to acquire a lock, it has to first send a lock acquire request to the
coordinator. Once it sends this request, it blocks execution and awaits reply until it acquires the lock. The
coordinator maintains a queue for each data structure of lock requests. Upon receiving such a request, if
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the queue is empty, it grants the lock and sends the message, otherwise it adds the request to the queue.
The requestor process upon receiving the lock executes the transaction, and then sends a release message
to the coordinator. The coordinator upon receipt of such a message, removes the next request from the
corresponding queue and grants that process the lock.
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Figure 14.4: Depiction of Centralized Mutual Exclusion Algorithm

An example of the algorithm is given in Figure 14.4.

There are two major issues with this algorithm, related to failures. When coordinator process goes down
while one of the processes is waiting on a response to a lock request, it leads to inconsistency. The new
coordinator that is elected (or reboots) might not know that the earlier process is still waiting for a response.
This issue can be tackled by maintaining persistent data on disk whenever a queue of the coordinator is
altered. Even if the process crashes, we can read the file and persist the state of the locks on storage and
recover the process.

The harder problem occurs when one of the client process crashes while it is holding the lock (during one
of its transactions). In such a case, coordinator is just waiting for the lock to be released while the other
process has gone down. We cannot use timeout in this case, because usually transactions take arbitrary
amount of time to go through. All other processes that are waiting on that lock are also blocked forever.
Even if the coordinator somehow knew that the client process has crashed, it may not always be advisable
to take the lock forcibly back because the client process may eventually reboot and think it has the lock and
continue its transaction. This causes inconsistency. This is a thorny problem which does not have any neat
solution. This limits the practicality of such an centralized algorithm.

14.5.2 Decentralized Algorithm

Decentralized algorithms use voting to figure out which lock requests to grant. In this scenario, each pro-
cess has an extra thread called the coordinator thread which deals with all the incoming locking requests.
Essentially, every process keeps a track of who has the lock, and for a new process to acquire a new lock, it
has to be granted an OK or go ahead vote from the strict majority of the processes. Here, majority means
more than half the total number of nodes (live or not) in the system. Thus, if any process wishes to acquire
a lock, it requests it from all other processes and if the majority of them tell it to acquire the lock, it goes
ahead and does so. Majority guarantees that a lock is not granted twice. Upon the receipt of the vote, the
other processes are also told that a lock has been acquired and thus, the processes hold up any other lock
request. Once a process is done with the transaction, it broadcasts to every other process that it has released
the lock.

This solves the problem of coordinator failure because if some nodes go down, we can deal with it so long as



Lecture 14: March 21 14-7

the majority agrees that whether the lock is in use or not. Client crashes are still a problem here.

14.5.3 Distributed Algorithm

This algorithm, developed by Ricart and Agrawala needs 2(n-1) messages and is based on Lamport’s clock
and total ordering of events to decide on granting locks. Basically, after the clocks are synchronized, the
process that asked for the lock first gets it. The initiator sends request messages to all n-1 processes stamped
with its id and the timestamp of its request. It then waits for replies from all other processes.

Any other process upon receiving such a request either sends reply if it does not want the lock for itself, or
is already in the transaction phase (in which case it doesn’t send any reply and the initiator has to wait),
or it itself wants to acquire the same lock in which case it compares its own request timestamp with that of
the incoming request. The one with the lower timestamp gets the lock first.

e Process k enters critical section as follows

— Generate new time stamp T'Sy = T'Sk41
— Send request(k,7'Sk) all other n-1 processes
— Wait until reply(j) received from all other processes

Enter critical section

e Upon receiving a request message, process j

— Sends reply if no contention
— If already in critical section, does not reply, queue request

— If wants to enter, compare T'S; with T'S;, and send reply if T'S, < T'S; , else queue (recall: total
ordering based on multicast)

Fully decentralized but there are n points of failure, which is worse than a centralized one.

14.5.4 Token Ring Algorithm

Actual topology is not a ring but for locking purpose there is a logical ring. And process only talk to neighbor
processes. A process with the token has the lock at that time. To acquire the lock one needs to wait. The
token is circulated through the logical ring. No method is there to request token, the process needs to wait
to get a lock.

In this algorithm one problem is loss of token, regenerating token is non-trivial, can not use timeout strategy.



