Last Class

- Leader election
- Distributed mutual exclusion

CS677: Distributed OS

Lecture 15, page 1

Transactions

- •Transactions provide higher level mechanism for *atomicity* of processing in distributed systems
 - Have their origins in databases
- •Banking example: Three accounts A:\$100, B:\$200, C:\$300
 - Client 1: transfer \$4 from A to B
 - Client 2: transfer \$3 from C to B
- •Result can be inconsistent unless certain properties are imposed on the accesses

Client 1	Client 2
Read A: \$100	
Write A: \$96	
	Read C: \$300
	Write C:\$297
Read B: \$200	
	Read B: \$200
	Write B:\$203
Write B:\$204	

ACID Properties

• Atomic: all or nothing

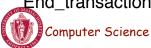
- Consistent: transaction takes system from one consistent state to another
- Isolated: Immediate effects are not visible to other (serializable)
- Durable: Changes are permanent once transaction completes (commits)

Client 1	Client 2	
Read A: \$100		
Write A: \$96		
Read B: \$200		
Write B:\$204		
	Read C: \$300	
	Write C:\$297	
	Read B: \$204	
	Write B:\$207	

CS677: Distributed OS

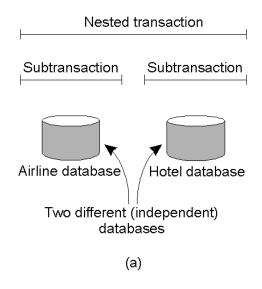
Lecture 15, page 3

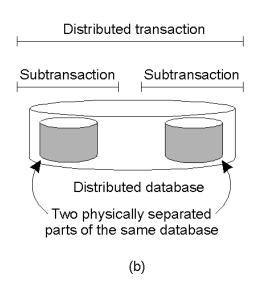
Transaction Primitives


Primitive	Description
BEGIN_TRANSACTION	Make the start of a transaction
END_TRANSACTION	Terminate the transaction and try to commit
ABORT_TRANSACTION	Kill the transaction and restore the old values
READ	Read data from a file, a table, or otherwise
WRITE	Write data to a file, a table, or otherwise

Example: airline reservation

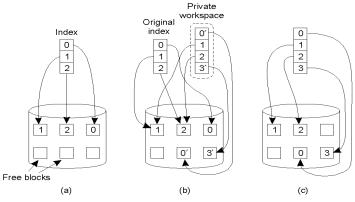
Begin_transaction


if(reserve(NY,Paris)==full) Abort_transaction if(reserve(Paris,Athens)==full)Abort_transaction if(reserve(Athens,Delhi)==full) Abort_transaction


End_transaction

CS677: Distributed OS Lecture 15, page 4

Distributed Transactions



CS677: Distributed OS

Lecture 15, page 5

Implementation: Private Workspace

- Each transaction get copies of all files, objects
- Can optimize for reads by not making copies
- Can optimize for writes by copying only what is required
- Commit requires making local workspace global

CS677: Distributed OS

Option 2: Write-ahead Logs

- *In-place updates*: transaction makes changes *directly* to all files/objects
- Write-ahead log: prior to making change, transaction writes to log on stable storage
 - Transaction ID, block number, original value, new value
- Force logs on commit
- If abort, read log records and undo changes [rollback]
- Log can be used to rerun transaction after failure
- Both workspaces and logs work for distributed transactions
- Commit needs to be *atomic* [will return to this issue in Ch. 7]

CS677: Distributed OS

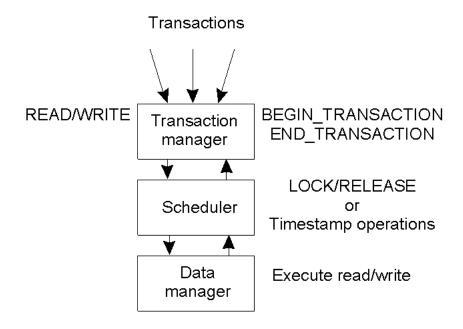
Lecture 15, page 7

Writeahead Log Example

x = 0;	Log	Log	Log
y = 0;			
BEGIN_TRANSACTION;			
x = x + 1;	[x = 0 / 1]	[x = 0 / 1]	[x = 0 / 1]
y = y + 2		[y = 0/2]	[y = 0/2]
x = y * y;			[x = 1/4]
END_TRANSACTION;			
(a)	(b)	(c)	(d)

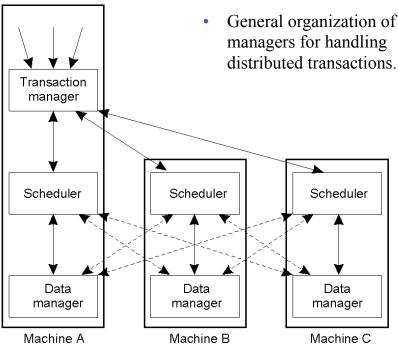
- a) A transaction
- b) d) The log before each statement is executed

Concurrency Control


- Goal: Allow several transactions to be executing simultaneously such that
 - Collection of manipulated data item is left in a consistent state
- Achieve consistency by ensuring data items are accessed in an specific order
 - Final result should be same as if each transaction ran sequentially
- Concurrency control can implemented in a *layered* fashion

CS677: Distributed OS

Lecture 15, page 9


Concurrency Control Implementation

General organization of managers for handling transactions.

Distributed Concurrency Control

CS677: Distributed OS

Lecture 15, page 11

Serializability

Schedule 1	x = 0; $x = x + 1$; $x = 0$; $x = x + 2$; $x = 0$; $x = x + 3$	Legal
Schedule 2	x = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;	Legal
Schedule 3	x = 0; $x = 0$; $x = x + 1$; $x = 0$; $x = x + 2$; $x = x + 3$;	Illegal

- Key idea: properly schedule conflicting operations
- Conflict possible if at least one operation is write
 - Read-write conflict
 - Write-write conflict

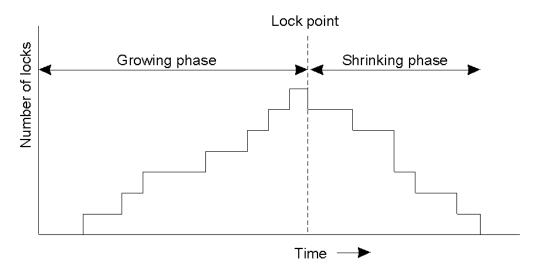
Optimistic Concurrency Control

- Transaction does what it wants and validates changes prior to commit
 - Check if files/objects have been changed by committed transactions since they were opened
 - Insight: conflicts are rare, so works well most of the time
- Works well with private workspaces
- Advantage:
 - Deadlock free
 - Maximum parallelism
- Disadvantage:
 - Rerun transaction if aborts
 - Probability of conflict rises substantially at high loads
- Not used widely

CS677: Distributed OS

Lecture 15, page 13

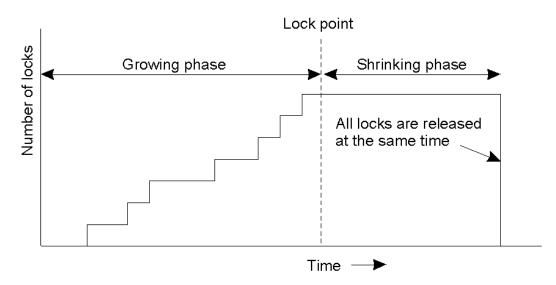
Two-phase Locking


- Widely used concurrency control technique
- Scheduler acquires all necessary locks in growing phase, releases locks in shrinking phase
 - Check if operation on *data item x* conflicts with existing locks
 - If so, delay transaction. If not, grant a lock on x
 - Never release a lock until data manager finishes operation on x

CS677: Distributed OS

- One a lock is released, no further locks can be granted
- Problem: deadlock possible
 - Example: acquiring two locks in different order
- Distributed 2PL versus centralized 2PL

Two-Phase Locking


Two-phase locking.

CS677: Distributed OS

Lecture 15, page 15

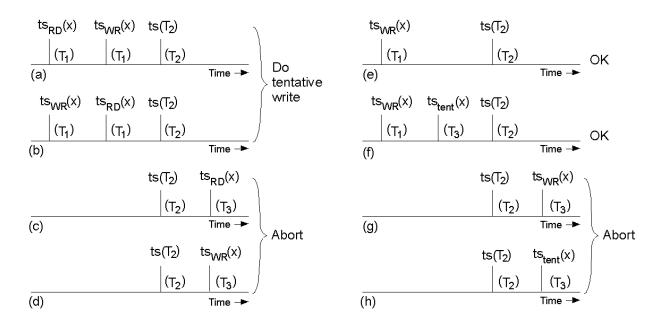
Strict Two-Phase Locking

Strict two-phase locking.

Timestamp-based Concurrency Control

- Each transaction Ti is given timestamp ts(Ti)
- If Ti wants to do an operation that conflicts with Tj
 - Abort Ti if $ts(Ti) \le ts(Tj)$
- When a transaction aborts, it must restart with a new (larger) time stamp
- Two values for each data item x
 - Max-rts(x): max time stamp of a transaction that read x
 - Max-wts(x): max time stamp of a transaction that wrote x

CS677: Distributed OS


Lecture 15, page 17

Reads and Writes using Timestamps

- $Read_i(x)$
 - If $ts(T_i) < max-wts(x)$ then Abort T_i
 - Else
 - Perform $R_i(x)$
 - $Max-rts(x) = max(max-rts(x), ts(T_i))$
- $Write_i(x)$
 - If $ts(T_i) < max-rts(x)$ or $ts(T_i) < max-wts(x)$ then Abort T_i
 - Else
 - Perform $W_i(x)$
 - Max- $wts(x) = ts(T_i)$

Pessimistic Timestamp Ordering

CS677: Distributed OS