Today: More Classical Problems

Termination Detection
Leader election

Mutual exclusion
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Termination Detection

Detecting the end of a distributed computation
Notation: let sender be predecessor, receiver be successor
Two types of markers: Done and Continue

After finishing its part of the snapshot, process QO sends a Done or
a Continue to its predecessor
Send a Done only when

— All of O’s successors send a Done

— 0 has not received any message since it check-pointed its local state and
received a marker on all incoming channels

— Else send a Continue

Computation has terminated if the initiator receives Done
messages from everyone
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Election Algorithms

Many distributed algorithms need one process to act as
coordinator

— Doesn’t matter which process does the job, just need to pick one
Election algorithms: technique to pick a unique
coordinator (aka leader election)
Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

Types of election algorithms: Bully and Ring algorithms
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Bully Algorithm

Each process has a unique numerical ID

Processes know the Ids and address of every other process
Communication is assumed reliable

Key Idea: select process with highest ID

Process initiates election if it just recovered from failure
or if coordinator failed

3 message types: election, OK, I won

Several processes can initiate an election simultaneously
— Need consistent result

O(n?) messages required with n processes
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Bully Algorithm Details

* Any process P can initiate an election

* P sends Election messages to all process with higher Ids
and awaits OK messages

* If no OK messages, P becomes coordinator and sends /
won messages to all process with lower Ids

 Ifitreceives an OK, it drops out and waits for an / won

 [If a process receives an Election msg, it returns an OK and
starts an election

 If a process receives a [ won, it treats sender an
coordinator
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Bully Algorithm Example
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. The bully election algorithm

. Process 4 holds an election

. Process 5 and 6 respond, telling 4 to stop
. Now 5 and 6 each hold an election
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Bully Algorithm Example

(d) (e)

d)  Process 6 tells 5 to stop
e)  Process 6 wins and tells everyone
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Ring-based Election

* Processes have unique Ids and arranged in a logical ring
* Each process knows its neighbors
— Select process with highest ID
* Begin election if just recovered or coordinator has failed
* Send Election to closest downstream node that is alive
— Sequentially poll each successor until a live node is found
* Each process tags its ID on the message
 Initiator picks node with highest ID and sends a coordinator message
*  Multiple elections can be in progress
—  Wastes network bandwidth but does no harm
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A Ring Algorithm
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Comparison

Assume n processes and one election in progress

 Bully algorithm
— Worst case: initiator is node with lowest ID
* Triggers n-2 elections at higher ranked nodes: O(n2) msgs
— Best case: immediate election: n-2 messages
* Ring

— 2 (n-1) messages always
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Elections in Wireless Environments (1)
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 Election algorithm in a wireless network, with node a as the
source. (a) Initial network. (b)—(e) The build-tree phase
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Elections in Large-Scale Systems

« Requirements for superpeer selection:

1. Normal nodes should have low-latency access to
superpeers.

2.Superpeers should be evenly distributed across
the overlay network.

3.There should be a predefined portion of
superpeers relative to the total number of nodes in
the overlay network.

4.Each superpeer should not need to serve more
than a fixed number of normal nodes.
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Elections in Large-Scale Systems (2)
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* Moving tokens in a two-dimensional space using repulsion forces.
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Distributed Synchronization

* Distributed system with multiple processes may need to
share data or access shared data structures

— Use critical sections with mutual exclusion
* Single process with multiple threads

— Semaphores, locks, monitors

« How do you do this for multiple processes in a
distributed system?

— Processes may be running on different machines

* Solution: lock mechanism for a distributed environment
— Can be centralized or distributed
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Centralized Mutual Exclusion

* Assume processes are numbered
* One process 1s elected coordinator (highest ID process)

» Every process needs to check with coordinator before
entering the critical section

 To obtain exclusive access: send request, await reply

» To release: send release message

 Coordinator:

— Receive request: if available and queue empty, send grant; if
not, queue request

— Receive release: remove next request from queue and send
grant
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Mutual Exclusion:
A Centralized Algorithm
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a) Process 1 asks the coordinator for permission to enter a critical region. Permission is
granted

b) Process 2 then asks permission to enter the same critical region. The coordinator does
not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2
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Properties

* Fair: requests are granted the lock in the order they were received

Simulates centralized lock using blocking calls

Simple: three messages per use of a critical section (request, grant, release)

Shortcomings:
— Single point of failure
— How do you detect a dead coordinator?
* A process can not distinguish between “lock in use” from a dead coordinator
— No response from coordinator in either case

— Performance bottleneck in large distributed systems
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Decentralized Algorithm

+ Use voting
* Assume n replicas and a coordinator per replica

 To acquire lock, need majority vote m > n/2
coordinators
— Non blocking: coordinators returns OK or “no”
» Coordinator crash => forgets previous votes
— Probability that k coordinators crash P(k) = mC, pk (1-p)mk

— Atleast 2m-n need to reset to violate correctness
¢ Z 2m-n nP(k)
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Distributed Algorithm

» [Ricart and Agrawala]: needs 2(n-1) messages
« Based on event ordering and time stamps

— Assumes total ordering of events in the system (Lamport’s clock)
* Process k enters critical section as follows

— Generate new time stamp 7S, = TS, +/

— Send request(k,TS,) all other n-1 processes

— Wait until reply(j) received from all other processes
Enter critical section
» Upon receiving a request message, process j

— Sends reply if no contention

— If already in critical section, does not reply, queue request

— If wants to enter, compare 7, with 7S and send reply if 7S, <TS,, else
queue (recall: total ordering based on multicast)
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A Distributed Algorithm
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a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter the
critical region.

Properties

 Fully decentralized
* N points of failure!

 All processes are involved 1n all decisions
— Any overloaded process can become a bottleneck
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A Token Ring Algorithm
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a)  Anunordered group of processes on a network.
b)  Alogical ring constructed in software.

« Use a token to arbitrate access to critical section

*  Must wait for token before entering CS

«  Pass the token to neighbor once done or if not interested
*  Detecting token loss in non-trivial
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Comparison

Algorithm Messagt_es per Delay befo_re entry (in Problems
entry/exit message times)

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2(n-1) 2(n-1) Crash of any
process

Token ring 1to Oton-1 Lost token, process
crash

* A comparison of four mutual exclusion algorithms.
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