
CMPSCI 677 Distributed and Operating Systems Spring 2019

Lecture 7: Process, Code and VM Migration
Lecturer: Prashant Shenoy Scribe: Zeal Shah

7.1 Announcements

• No class on Tuesday (02/19/2019).

• Guest lecture on Cloud Computing and Data Centers during the class on Wednesday (02/20/2019).

• Homework 2 and Lab 1 are out. Github classroom will be used for labs. Your code development history
on Github classroom will be checked by the instructors. You can use Java, C++ or Python to do your
labs. Please check with the instructors before you decide on using any other language for the labs.

7.2 Server Design Issues

7.2.1 Request Processing

There are two types of request processing methods in modern servers:

• Iterative: The server sits in a while loop serving requests. This method doesn’t enable any concurrency
and all requests are queued. This method is preferred in single-core single process servers.

• Concurrent: When a request arrives, the server will spawn a thread which will process the request.
Preferred in multi-core multi-process systems.

7.2.2 How to locate an end-point?

How does the client figure out the port number to send the request to? One way is to hard-code server’s IP
address and port number into the client application but it is not recommended. A more flexible and better
method of designing the system is to use a naming service where the server could register itself.

7.2.3 Stateful or Stateless

Servers can be classified into three categories in terms of state:

• Stateful: Maintains state of clients.It can be used to maintain sessions of user activity.

• Stateless: Doesn’t maintain any client states.

• Soft State: Maintains state for limited amount of time by caching the data. Discarding the existing
state does not change the correctness of the system.

7-1



7-2 Lecture 7: Process, Code and VM Migration

7.2.4 Clustered Servers

For high volume services, scaling is achieved through tiering/clustering of servers. Each tiered level may be
replicated and load is balanced across the clusters through a dispatcher which assigns each incoming request
to a server in the cluster. There are two methods for request assignment in clusters:

• Round Robin: Requests are assigned in a round robin fashion. This approach isn’t ideal or optimal
for implementing user based sessions (activity by a single user in a small continuous time period).

• Session based: Requests from a user session are routed to the same server in order to maintain state
about that session.

TCP splicing can be used for communication between the system and the client in a multi-tiered architecture.
Client establishes a TCP connection with the Switch node that is the front node. Switch will then make
a TCP connection with an actual server and will forward client’s request to that server. Switch acts as an
intermediate node that will basically receive requests from the client and will relay them to an actual server.
The client can only see the first node to which it sends the request. The server which actually processes
client’s request remains transparent to the client.

Question: If the client has only established a connection with the switch and not the server then how is
the server sending the response directly to the client?
Answer: Server is spoofing the IP address of the switch to keep everything transparent. When server sends
the reply, it sends the reply with IP address of the Switch, so the client doesn’t know that the response
actually came from a third machine.

Question:How is the DNS configured for multiple servers?
Answer: DNS stands for Domain Name Service. DNS allows you to transfer name of the server to its IP
address. In the case of clustered servers that we discussed above, url request will point only to the switch
because the server replicas are transparent to the outside world and their internal IP addresses are not
exposed to the outside world.

7.2.5 Server Architectures

There are primarily four types of server architectures:

• Sequential: Serves one request at a time and does not have concurrency. It does not take advantage
of multiple cores.

• Concurrent: Spawns a new thread or process for each request. It can also assign one thread/process
from the pre-spawned pool of threads/processes to an incoming request. Concurrency can be achieved.
There exist two variants of concurrent models- thread based and process based. Both the models use
master-slave mechanism to service the incoming requests.

• Event-based Sequential: Single process server, but is asynchronous and all the calls are non-blocking
calls. Since, there is no blocking while a request is being processed, other requests can be processed
concurrently. Thus, this model allows you to achieve concurrency without using threads by making
the use of asynchronous programming. It is one of the most complicated models to develop.

For a single processor, if context switch overhead is used as a measure of efficiency, event-based architecture
wins over process-based and thread-based architectures. Thread-based architecture involves thread context



Lecture 7: Process, Code and VM Migration 7-3

switching which is less expensive in comparison to process context switching. But event-based architec-
ture has no context switching involved because everything happens inside a single process. Event-based
architectures are best architectures for writing server applications.

But on the other hand, sequential and event-based being single-threaded cannot take advantage of multiple
cores. Thread based and process based architectures can be more efficient in this case because they make
use of multiple threads and processes. Additionally, one can develop a hybrid architecture where one thread
is assigned to one core and each thread then performs event-based.

7.2.6 Scalability

Server capacity can be scaled by many different ways as follows:

• Buy a bigger machine.

• Replicate application on cluster of machines. Replicate means you run the complete code on multiple
machines.

• Distribute data and algorithms. Distribute means you split a task into sub-tasks and run each sub-task
on a different machine.

• Ship code instead of data.

• Cache.

Question: If you could distribute your algorithm across machines, would it not have scalability problem of
not being replicated?
Answer: You can do both distribution and replication. An example of this is clustered servers. In clustered
servers, functionalities are distributed across tiers and each tier is replicated.

Question: What does shipping code instead of data mean?
Answer: Rather than you sending data to the computation for execution, the computation will come where
the data is present and will then execute.

7.3 Process, Code and VM Migration

The motivation behind developing techniques for code, process and VM migration is that migrating these
components of a system helps in improved performance and flexibility.

There are two types of migration models:

• Process Migration: Also known as strong mobility, this includes the migration of all the components
of a process i.e. code segment, resource segments and execution segment. An active process (an already
executing program) on a machine is suspended, its resources like memory contents and register contents
are migrated over to the new machine and then the process execution is restarted. It involves significant
amount of data transfer over the network.

• Code Migration: Also known as weak mobility. In this model only the code is migrated and the
process is restarted from the initial state on the destination machine. The network transfer overhead
is low since only the code is transferred. Some examples of code migration are web-form, flash/java
applets in browser, web search. Docker is also considered to be an example of code migration.



7-4 Lecture 7: Process, Code and VM Migration

Question: Why is a search query an example of code migration?
Answer: Keywords typed in a search bar basically become part of a query and query is a program. On
pressing submit, the query is sent to another machine and is executed there. This illustrates migration of
code from client machine to the server machine.

Question: In process migration, if you suspended an active process and migrated it, how do you take care
of its state?
Answer: Specific state of process like its memory contents can simply be written onto a disk and the process
can be resumed elsewhere. Debuggers perform a similar operation.

Question: Does the migration have to be only between client and server or can it be between a cluster of
servers?
Answer: Migration is not limited to just client and server. Migration is independent of source and destina-
tion of code or process.

Examples of sender-initiated migration: Web searches, database queries. Examples of receiver-initiated mi-
gration: Browser downloading Java applet or flash application from the server

A process can be migrated or cloned. In case of migration, complete process is moved to a different machine.
In cloning, a copy of the process is created on a different machine and you allow both the copies to execute.
Cloning is a convenient way of replicating the process. An example for cloning is fork of a process.

To decide whether to migrate a resource attached to a process or not, we look at the nature of binding of
resource to process. There are three types of resource to process bindings:

• Identifier: Hard binding, one that you cannot substitute. Least flexibility. Example is URL for a
website

• Value: Slightly weaker binding. Libraries used in Java are a good example.

• Type: Weakest binding, one that can be substituted. Maximum flexibility. Example is a local device
like printer.

Apart from the resource binding, it is also necessary to look at the cost of moving resources which can also
be classified into three categories:

• Unattached: Very low cost of moving. Example- files.

• Fastened: High low cost of moving. Example- databases.

• Fixed: Can’t be moved. Example- local devices.

Different combinations of resource-to-machine binding and process-to-resource binding are tabulated below:

Unattached Fastened Fixed
By Identifier MV (or GR) GR (or MV) GR
By Value CP (or MV, GR) GR (or CP) GR
By Type RB (or GR, CP) RB (or GR, CP) RB (or GR)

where GR means establishing global system-wide references, MV means moving the resources, CP means
copying the resource and RB means rebinding process to locally available resource.

Question: Would you want to do checkpoint and restart instead of migrating a process?
Answer: Checkpoint and restart is a standard way to implement process-migration and not an alternative
to process-migration.



Lecture 7: Process, Code and VM Migration 7-5

Heterogeneous systems are systems in which the source and client machines can have different architecture
and even different OS. Code-migration is possible if the code we are trying to migrate is interpretable
code, for example, Python code. But, if the code is binary code then it will require recompilation because
directly migrating binary code will not work. Process migration in heterogeneous systems will require
recompilation of code platform, transfer of data and necessary translations. Even after achieving this, the
process might work across heterogeneous systems under limitations. On the other hand, migrating Java code
across heterogeneous platforms will not be a problem because all JVMs provide the same abstraction even
though they are running on different operating systems.

7.4 VM Migration

Process and code migration in heterogeneous systems pose a challenge. Migration via interpreted codes is one
possibility but it is often clumsy in practice and is almost never used. Moreover, interpreted code migration
only supports weak mobility. In such cases, it is beneficial to look at techniques for VM migration. VMs can
be migrated from one machine to another irrespective of architectural differences, without any noticeable
down-time. One scenario where VM migration will prove to be helpful is when one VM is running on a
server which does not have enough resources to cater to the increased traffic. In this case, one can simply
migrate that VM to a bigger server with more resources so that now the VM cans service more requests.
VM migration can be live unlike process migration.

There are two methods for VM migration:

• Pre-copy Migration: The process of pre-copy migration can be listed down as:

1. Copy all memory pages to destination

2. Copy memory pages which were changed during the previous copy

3. Repeat step 2 until number of memory pages is small.

4. Stop VM, copy rest of memory pages at destination and start VM at the destination.

5. Send ARP request to switch.

Machine has 2 IP addresses- one IP for the actual machine and one logical IP address for the virtual
machine running on it. VM’s IP address is portable and so it can be decoupled from the source machine
and can be sent over to the new machine. This is done soon after the memory contents have been
copied at the destination. It is followed by sending an ARP request to inform switch about the change
in port number associated with VM’s IP address. Thus, now the switch will send all the packets
addressed to VM’s IP to the new port as opposed to the old port. NOTE: Logical Ethernet card is
mapped onto the physical interface card. So, whenever you send a packet, it gets sent to the physical
interface which is then delivered to the right logical Ethernet based on its IP address.

• Post-copy Migration: The process of post-copy migration can be listed as:

1. Stop VM

2. Copy the non-memory VM states to destination. These states are enough to atleast start executing
the VM at destination.

3. Resume VM at destination

4. Copy memory pages in the background.

In the last step, if a required memory page is not found, then it will lead to asynchronous page faults.
During page faults, VM will stall until the page has been fetched over. Thus, the pages which were
not transferred initially can be fetched asynchronously in the background.



7-6 Lecture 7: Process, Code and VM Migration

Pre-copy migration does not have any performance overhead. But if the memory of your system is changing
very quickly, pre-copy migration can take longer time and so it has a high copying overhead.

Post-copy migration has relatively less memory copying overhead because the memory is no longer chang-
ing. However, post-copy migration has a higher performance overhead because of the stalls introduced by
networked page faults.

Question: How much copying is enough to restart VM at the destination?
Answer: Moving atleast all the registers, a few OS pages that program counter is pointing to, should be
good enough to restart the VM. More details depend on the hardware architecture.

Question: Programs often have spatial and temporal locality of references, can we use it to intelligently
figure out what to pre-fetch?
Answer: Post-copy migration can make use of such optimizations where for example, one can get the
working set of the programs first and then fetch the rest.


