Module 1: Server Design Issues

) . Server machine
Client machine i hi Server machine
2. Rquest Register Client machine 5, Borifhiie
w» Server || end point service i Actual | Create
Client |« Client | server server for
\\ ™~ requested
Py \ service
b Super-
1. Askfor ™ @\ S 1. Request saver
end point | [Daemon \taT)Iépomt service

() (b)
* Server Design
— Iterative versus concurrent

* How to locate an end-point (port #)?
— Well known port #

— Directory service (port mapper in Unix)
— Super server (inetd in Unix)

) Computer Science CS677: Distributed OS Lecture 7, page |

Stateful or Stateless?

 Stateful server
— Maintain state of connected clients
— Sessions in web servers
 Stateless server
— No state for clients
* Soft state

— Maintain state for a limited time; discarding state does not
impact correctness

,".

Computer Science CS677: Distributed OS Lecture 7, page 2

Server Clusters

'
Logical switch ! Application/compute servers | Di uted Logically a
(possibly multiple) | | file/dal

t
| | sys ;:se single TCP Response Server
! I connection
i I
" P .
Client requests request ! | Request
¥ « > Request .
— O+]—us crom | Pomes | [¢ Vi -
! | .

First tier Second tier ! Third tier Server

» Web applications use tiered architecture

— Each tier may be optionally replicated; uses a dispatcher
— Use TCP splicing or handoffs

Computer Science CS677: Distributed OS Lecture 7, page 3

Server Architecture

« Sequential
— Serve one request at a time

— Can service multiple requests by employing events and
asynchronous communication

» Concurrent
— Server spawns a process or thread to service each request
— Can also use a pre-spawned pool of threads/processes (apache)

e Thus servers could be
— Pure-sequential, event-based, thread-based, process-based
* Discussion: which architecture is most efficient?

Computer Science CS677: Distributed OS Lecture 7, page 4

Scalability

* Question:How can you scale the server capacity?
* Buy bigger machine!

* Replicate

* Distribute data and/or algorithms

 Ship code instead of data

* Cache

A\l 5 Computer Science CS677: Distributed OS Lecture 7, page 5

Code, Process, and VM Migration

* Motivation

* How does migration occur?

* Resource migration

« Agent-based system

 Details of process migration

» Migration of Virtual Machines

Computer Science CS677: Distributed OS Lecture 7, page 6

Module 2: Migration Introduction

+ Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

» Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data
from server to client (e.g., databases)

— Improve parallelism — agent-based web searches

| Computer Science CS677: Distributed OS Lecture 7, page 7

Motivation

+ Flexibility
— Dynamic configuration of distributed system
— Clients don’t need preinstalled software — download on
demand

2. Client and server

communicate

Client Server

/
1. Client fetches code
Service-specific

client-side code

Code repository

| Computer Science CS677: Distributed OS Lecture 7, page 8

Migration models

Process = code seg + resource seg + execution seg

Weak versus strong mobility
— Weak => transferred program starts from initial state

Sender-initiated versus receiver-initiated
Sender-initiated

— migration initiated by machine where code resides

* Client sending a query to database server
— Client should be pre-registered

Receiver-initiated
— Migration initiated by machine that receives code

— Java applets
— Receiver can be anonymous
: Jl Computer Science CS677: Distributed OS Lecture 7, page 9

Who executes migrated entity?

* Code migration:

— Execute in a separate process

— [Applets] Execute in target process
* Process migration

— Remote cloning

— Migrate the process

Jl Computer Science CS677: Distributed OS Lecture 7, page 10

Models for Code Migration

Execute at
Sender-initiated / target process
mobility . Execute in
N separate process
Weak mobility Execute at
Receiver-initiated — target process
mobility “~__ Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated g P
mobility
Clone process
Strong mobility

Migrat
Receiver-initiated / 'grate process

mobility
Clone process

Computer Science CS677: Distributed OS Lecture 7, page 11

Do Resources Migrate?

« Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

« Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
* Database, web sites
— Fixed resources
* Local devices, communication end points

2 ? Computer Science CS677: Distributed OS Lecture 7, page 12

Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to-| By identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding | By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

Actions to be taken with respect to the references to local resources
when migrating code to another machine.

GR: establish global system-wide reference

MV: move the resources

CP: copy the resource

RB: rebind process to locally available resource

omputer Science CS677: Distributed OS Lecture 7, page 13

Migration in Heterogeneous Systems

« Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled

Local stack procedure call onto
operations B migration stack
Local
Procedure B / variables B
Return label
> (jump) to A
Call from Local Parameter
AtoB variables B values for B
Return addr. Identification
\ fromB for proc. B
Local
Parameter variables A
Push procedure values for B
call onto program Return label
stack Local stack to caller A
operations A Parameter
Local values for A
variables A)
Procedure A Identification
Return addr. for proc. A
from A
Migration
Program stack
stack (marshalled

data only)

H Computer Science CS677: Distributed 0S Lecture 7, page 14

Module 3: Virtual Machine Migration

* VMs can be migrates from one physical machine to
another

» Migration can be live - no application downtime
* [terative copying of memory state
» How are network connections handled?

* Inherently migrates the OS and all its processes

Jl Computer Science CS677: Distributed OS Lecture 7, page 15

Pre-Copy VM Migration

* 1. Enable dirty page tracking
« 2. Copy all memory pages to destination

* 3. Copy memory pages dirtied during the
previous copy again

* 4. Repeat 3rd step until the rest of memory pages
is small.

eveccccce,
.

* 5.Stop VM m: .
* 6. Copy the rest of memory pages and :

v 3 3
 non-memory VM states \/ :
* 7.Resume VM at destination ’)

« 8. ARP pkt to switch

Machine A Machine B

Figures Courtesy: Isaku Yamahata, LinuxCon Japan 2012

5 Computer Science Lecture 6, page 16

Post-Copy VM Migration

* 1. Stop VM
» 2. Copy non-memory VM states to destination
* 3. Resume VM at destination

* 4. Copy memory pages on-demand/background
— Async page fault can be utilized

Copy memory pages
*On-demand(network fault)
sbackground(precache)

Computer Science CS677: Distributed OS Lecture 7, page 17

VM Migration Time

Copy VM memory before switching the execution host

Round 2 \Round N \ stop

Precopy
Precopy Round 1 e

resume

Performance degradation

. . D ti
Due to dirty page tracking oun tme

Total migration time

time >
stop resume
5 Postcopy
Postcopy €| Demand/pre paging(with async PF)
- :
Down time Performance degradation

Due to network fault

Figure Courtesy: Isaku Yamahata, LinuxCon Japan 2012

Total migration time
Copy VM memory after switching the execution host

Zg : Compu‘rer Science CS677: Distributed OS Lecture 7, page 18

Case Study: Viruses and Malware

 Viruses and malware are examples of mobile code
— Malicious code spreads from one machine to another
 Sender-initiated:
— proactive viruses that look for machines to infect
* Autonomous code
* Receiver-initiated

— User (receiver) clicks on infected web URL or opens an
infected email attachment

| Computer Science CS677: Distributed OS Lecture 7, page 19

