
Computer Science Lecture 7, page CS677: Distributed OS

Module 1: Server Design Issues

• Server Design
– Iterative versus concurrent

• How to locate an end-point (port #)?
– Well known port #
– Directory service (port mapper in Unix)
– Super server (inetd in Unix)

!1

Computer Science Lecture 7, page CS677: Distributed OS

Stateful or Stateless?

• Stateful server
– Maintain state of connected clients
– Sessions in web servers

• Stateless server
– No state for clients

• Soft state
– Maintain state for a limited time; discarding state does not

impact correctness

!2

Computer Science Lecture 7, page CS677: Distributed OS

Server Clusters

• Web applications use tiered architecture
– Each tier may be optionally replicated; uses a dispatcher
– Use TCP splicing or handoffs

!3

Computer Science Lecture 7, page CS677: Distributed OS

Server Architecture

• Sequential
– Serve one request at a time
– Can service multiple requests by employing events and

asynchronous communication
• Concurrent

– Server spawns a process or thread to service each request
– Can also use a pre-spawned pool of threads/processes (apache)

• Thus servers could be
– Pure-sequential, event-based, thread-based, process-based

• Discussion: which architecture is most efficient?

!4

Computer Science Lecture 7, page CS677: Distributed OS

Scalability

• Question:How can you scale the server capacity?
• Buy bigger machine!
• Replicate
• Distribute data and/or algorithms
• Ship code instead of data
• Cache

!5

CS677: Distributed OSComputer Science Lecture 7, page

Code, Process, and VM Migration

• Motivation
• How does migration occur?
• Resource migration
• Agent-based system
• Details of process migration
• Migration of Virtual Machines

!6

CS677: Distributed OSComputer Science Lecture 7, page

Module 2: Migration Introduction

• Key reasons: performance and flexibility
• Process migration (aka strong mobility)

– Improved system-wide performance – better utilization of
system-wide resources

– Examples: Condor, DQS
• Code migration (aka weak mobility)

– Shipment of server code to client – filling forms (reduce
communication, no need to pre-link stubs with client)

– Ship parts of client application to server instead of data
from server to client (e.g., databases)

– Improve parallelism – agent-based web searches

!7

CS677: Distributed OSComputer Science Lecture 7, page

Motivation

• Flexibility
– Dynamic configuration of distributed system
– Clients don’t need preinstalled software – download on

demand

!8

CS677: Distributed OSComputer Science Lecture 7, page

Migration models

• Process = code seg + resource seg + execution seg
• Weak versus strong mobility

– Weak => transferred program starts from initial state
• Sender-initiated versus receiver-initiated
• Sender-initiated

– migration initiated by machine where code resides
• Client sending a query to database server

– Client should be pre-registered

• Receiver-initiated
– Migration initiated by machine that receives code
– Java applets
– Receiver can be anonymous

!9

CS677: Distributed OSComputer Science Lecture 7, page

Who executes migrated entity?

• Code migration:
– Execute in a separate process
– [Applets] Execute in target process

• Process migration
– Remote cloning
– Migrate the process

!10

CS677: Distributed OSComputer Science Lecture 7, page

Models for Code Migration

• Alternatives for code migration.

!11

CS677: Distributed OSComputer Science Lecture 7, page

Do Resources Migrate?

• Depends on resource to process binding
– By identifier: specific web site, ftp server
– By value: Java libraries
– By type: printers, local devices

• Depends on type of “attachments”
– Unattached to any node: data files
– Fastened resources (can be moved only at high cost)

• Database, web sites
– Fixed resources

• Local devices, communication end points

!12

CS677: Distributed OSComputer Science Lecture 7, page

Resource Migration Actions

• Actions to be taken with respect to the references to local resources
when migrating code to another machine.

• GR: establish global system-wide reference
• MV: move the resources
• CP: copy the resource
• RB: rebind process to locally available resource

Unattached Fastened Fixed

By identifier
By value
By type

MV (or GR)
CP (or MV, GR)
RB (or GR, CP)

GR (or MV)
GR (or CP)
RB (or GR, CP)

GR
GR
RB (or GR)

Resource-to machine binding

Process-to-
resource

binding

!13

CS677: Distributed OSComputer Science Lecture 7, page

Migration in Heterogeneous Systems
• Systems can be heterogeneous (different architecture, OS)

– Support only weak mobility: recompile code, no run time information
– Strong mobility: recompile code segment, transfer execution segment

[migration stack]
– Virtual machines - interpret source (scripts) or intermediate code [Java]

!14

CS677: Distributed OSComputer Science Lecture 7, page

Module 3: Virtual Machine Migration

• VMs can be migrates from one physical machine to
another

• Migration can be live - no application downtime
• Iterative copying of memory state
• How are network connections handled?

• Inherently migrates the OS and all its processes

!15

Computer Science Lecture 6, page

Pre-Copy VM Migration
• 1. Enable dirty page tracking
• 2. Copy all memory pages to destination
• 3. Copy memory pages dirtied during the

previous copy again
• 4. Repeat 3rd step until the rest of memory pages

is small.
• 5. Stop VM
• 6. Copy the rest of memory pages and
• non-memory VM states
• 7. Resume VM at destination
• 8. ARP pkt to switch

!16

Figures Courtesy: Isaku Yamahata, LinuxCon Japan 2012

CS677: Distributed OSComputer Science Lecture 7, page

Post-Copy VM Migration

• 1. Stop VM
• 2. Copy non-memory VM states to destination
• 3. Resume VM at destination
• 4. Copy memory pages on-demand/background

– Async page fault can be utilized

!17

CS677: Distributed OSComputer Science Lecture 7, page

VM Migration Time

!18

Fi
gu

re
 C

ou
rte

sy
: I

sa
ku

 Y
am

ah
at

a,
 L

in
ux

C
on

 J
ap

an
 2

01
2

CS677: Distributed OSComputer Science Lecture 7, page

Case Study: Viruses and Malware

• Viruses and malware are examples of mobile code
– Malicious code spreads from one machine to another

• Sender-initiated:
– proactive viruses that look for machines to infect

• Autonomous code
• Receiver-initiated

– User (receiver) clicks on infected web URL or opens an
infected email attachment

!19

