
Computer Science Lecture 5, page CS677: Distributed OS

Module 1: Virtualization

• Virtualization: extend or replace an existing interface to
mimic the behavior of another system.
– Introduced in 1970s: run legacy software on newer mainframe

hardware
• Handle platform diversity by running apps in VMs

– Portability and flexibility

!1

Computer Science Lecture 5, page CS677: Distributed OS

Types of Interfaces

• Different types of interfaces
– Assembly instructions
– System calls
– APIs

• Depending on what is replaced /mimiced, we obtain
different forms of virtualization

!2

Computer Science Lecture 5, page CS677: Distributed OS

Types of Virtualization
• Emulation

– VM emulates/simulates complete hardware
– Unmodified guest OS for a different PC can be run

• Bochs, VirtualPC for Mac, QEMU
• Full/native Virtualization

– VM simulates “enough” hardware to allow an unmodified
guest OS to be run in isolation

• Same hardware CPU
– IBM VM family, VMWare Workstation, Parallels, VirtualBox

!3

Computer Science Lecture 5, page CS677: Distributed OS

Types of virtualization
• Para-virtualization

– VM does not simulate hardware
– Use special API that a modified guest OS must use
– Hypercalls trapped by the Hypervisor and serviced
– Xen, VMWare ESX Server

• OS-level virtualization
– OS allows multiple secure virtual servers to be run
– Guest OS is the same as the host OS, but appears isolated

• apps see an isolated OS
– Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker

• Application level virtualization
– Application is gives its own copy of components that are not shared

• (E.g., own registry files, global objects) - VE prevents conflicts
– JVM, Rosetta on Mac (also emulation), WINE

!4

Computer Science Lecture 5, page

Computing Parable

• Lion and the Rabbit

!5

Computer Science Lecture 5, page CS677: Distributed OS

Module 2: Types of Hypervisors

• Hypervisor/VMM: virtualization layer
– resource management, isolation, scheduling, …

• Type 1: hypervisor runs on “bare metal”
• Type 2: hypervisor runs on a host OS

– Guest OS runs inside hypervisor
• Both VM types act like real hardware

!6

Computer Science Lecture 5, page CS677: Distributed OS

How Virtualization works?

• CPU supports kernel and user mode (ring0, ring3)
– Set of instructions that can only be executed in kernel mode

• I/O, change MMU settings etc -- sensitive instructions
– Privileged instructions: cause a trap when executed in user mode

• Result: type 1 virtualization feasible if sensitive instruction subset
of privileged instructions

• Intel 386: ignores sensitive instructions in user mode
– Can not support type 1 virtualization

• Recent Intel/AMD CPUs have hardware support
– Intel VT, AMD SVM

• Create containers where a VM and guest can run
• Hypervisor uses hardware bitmap to specify which inst should trap
• Sensitive inst in guest traps to hypervisor

!7

Computer Science Lecture 5, page CS677: Distributed OS

Type 1 hypervisor

• Unmodified OS is running in user mode (or ring 1)
– But it thinks it is running in kernel mode (virtual kernel mode)
– privileged instructions trap; sensitive inst-> use VT to trap
– Hypervisor is the “real kernel”

• Upon trap, executes privileged operations
• Or emulates what the hardware would do

!8

Computer Science Lecture 5, page CS677: Distributed OS

Type 2 Hypervisor
• VMWare example

– Upon loading program: scans code for basic blocks
– If sensitive instructions, replace by Vmware procedure

• Binary translation
– Cache modified basic block in VMWare cache

• Execute; load next basic block etc.
• Type 2 hypervisors work without VT support

– Sensitive instructions replaced by procedures that emulate
them.

!9

Computer Science Lecture 5, page CS677: Distributed OS

Paravirtualization

• Both type 1 and 2 hypervisors work on unmodified OS
• Paravirtualization: modify OS kernel to replace all

sensitive instructions with hypercalls
– OS behaves like a user program making system calls
– Hypervisor executes the privileged operation invoked by

hypercall.

!10

Computer Science Lecture 5, page CS677: Distributed OS

Module 3: Memory virtualization
• OS manages page tables

– Create new pagetable is sensitive -> traps to hypervisor
• hypervisor manages multiple OS

– Need a second shadow page table
– OS: VM virtual pages to VM’s physical pages
– Hypervisor maps to actual page in shadow page table
– Two level mapping
– Need to catch changes to page table (not privileged)

• Change PT to read-only - page fault
• Paravirtualized - use hypercalls to inform

!11

Computer Science Lecture 5, page

I/O Virtualization
• Each guest OS thinks it “owns” the disk
• Hypervisor creates “virtual disks”

– Large empty files on the physical disk that appear as “disks” to
the guest OS

• Hypervisor converts block # to file offset for I/O
– DMA need physical addresses

• Hypervisor needs to translate

• NIC Virtualization

CS677: Distributed OS !12

Computer Science Lecture 5, page

Virtual Appliances & Multi-Core
• Virtual appliance: pre-configured VM with OS/ apps

pre-installed
– Just download and run (no need to install/configure)
– Software distribution using appliances

• Multi-core CPUs
– Run multiple VMs on multi-core systems
– Each VM assigned one or more vCPU
– Mapping from vCPUs to physical CPUs

• Today: Virtual appliances have evolved into docker containers

CS677: Distributed OS !13

Computer Science Lecture 5, page

Use of Virtualization Today
• Data centers:

– server consolidation: pack multiple virtual servers onto a
smaller number of physical server

• saves hardware costs, power and cooling costs
• Cloud computing: rent virtual servers

– cloud provider controls physical machines and mapping of
virtual servers to physical hosts

– User gets root access on virtual server
• Desktop computing:

– Multi-platform software development
– Testing machines
– Run apps from another platform

!14

Computer Science Lecture 5, page

Case Study: PlanetLab

• Distributed cluster across universities
– Used for experimental research by students and faculty in

networking and distributed systems
• Uses a virtualized architecture

– Linux Vservers
– Node manager per machine
– Obtain a “slice” for an experiment: slice creation service

!15

Computer Science Lecture 5, page CS677: Distributed OS

Virtual machine Interface

• Standardize the VM interface so kernel can run on bare
hardware or any hypervisor

!16

Computer Science Lecture 5, page CS677: Distributed OS

Examples

• Application-level virtualization: “process virtual
machine”

• VMM /hypervisor

!17

