
Computer Science Lecture 4, page CS677: Distributed OS

Module 1: Multiprocessor Scheduling

•Will consider only shared memory multiprocessor or multi-core CPU

•Salient features: One or more caches: cache affinity is important
– Semaphores/locks typically implemented as spin-locks: preemption during

critical sections
•Multi-core systems: some caches shared (L2,L3); others are not

!1

Computer Science Lecture 4, page CS677: Distributed OS

Multiprocessor Scheduling

•Central queue – queue can be a bottleneck

•Distributed queue – load balancing between queue

!2

Computer Science Lecture 4, page CS677: Distributed OS

Multiprocessor Scheduling

• Common mechanisms combine central queue with per
processor queue (SGI IRIX)

• Exploit cache affinity – try to schedule on the same
processor that a process/thread executed last

• Context switch overhead
– Quantum sizes larger on multiprocessors than uniprocessors

!3

Computer Science Lecture 4, page CS677: Distributed OS

Parallel Applications on SMPs

• Gang scheduling: schedule parallel app at once
• Effect of spin-locks: what happens if preemption occurs

in the middle of a critical section?
– Preempt entire application (co-scheduling)
– Raise priority so preemption does not occur (smart scheduling)
– Both of the above

• Provide applications with more control over its
scheduling
– Users should not have to check if it is safe to make certain

system calls
– If one thread blocks, others must be able to run

!4

Computer Science Lecture 4, page CS677: Distributed OS

Module 2: Distributed Scheduling:
Motivation

• Distributed system with N workstations
– Model each w/s as identical, independent M/M/1 systems
– Utilization u, P(system idle)=1-u

• What is the probability that at least one system is idle
and one job is waiting?

!5

Computer Science Lecture 4, page CS677: Distributed OS

Implications

• Probability high for moderate system utilization
– Potential for performance improvement via load distribution

• High utilization => little benefit
• Low utilization => rarely job waiting
• Distributed scheduling (aka load balancing) potentially useful
• What is the performance metric?

– Mean response time
• What is the measure of load?

– Must be easy to measure
– Must reflect performance improvement

!6

Computer Science Lecture 4, page CS677: Distributed OS

Design Issues

• Measure of load
– Queue lengths at CPU, CPU utilization

• Types of policies
– Static: decisions hardwired into system
– Dynamic: uses load information
– Adaptive: policy varies according to load

• Preemptive versus non-preemptive
• Centralized versus decentralized
• Stability: λ>µ => instability, λ1+λ2<µ1+µ2=>load balance

– Job floats around and load oscillates

!7

Computer Science Lecture 4, page CS677: Distributed OS

Components

• Transfer policy: when to transfer a process?
– Threshold-based policies are common and easy

• Selection policy: which process to transfer?� �
– Prefer new processes
– Transfer cost should be small compared to execution cost

• Select processes with long execution times
• Location policy: where to transfer the process?

– Polling, random, nearest neighbor
• Information policy: when and from where?

– Demand driven [only if sender/receiver], time-driven
[periodic], state-change-driven [send update if load changes]

!8

Computer Science Lecture 4, page CS677: Distributed OS

Sender-initiated Policy

• Transfer policy

• Selection policy: newly arrived process
• Location policy: three variations

– Random: may generate lots of transfers => limit max transfers
– Threshold: probe n nodes sequentially

• Transfer to first node below threshold, if none, keep job
– Shortest: poll Np nodes in parallel

• Choose least loaded node below T

!9

Computer Science Lecture 4, page CS677: Distributed OS

Receiver-initiated Policy

• Transfer policy: If departing process causes load < T,
find a process from elsewhere

• Selection policy: newly arrived or partially executed
process

• Location policy:
– Threshold: probe up to Np other nodes sequentially

• Transfer from first one above threshold, if none, do nothing
– Shortest: poll n nodes in parallel, choose node with heaviest

load above T

!10

Computer Science Lecture 4, page CS677: Distributed OS

Symmetric Policies
• Nodes act as both senders and receivers: combine

previous two policies without change
– Use average load as threshold

• Improved symmetric policy: exploit polling information
– Two thresholds: LT, UT, LT <= UT
– Maintain sender, receiver and OK nodes using polling info
– Sender: poll first node on receiver list …
– Receiver: poll first node on sender list …

!11

Computer Science Lecture 4, page CS677: Distributed OS

Module 3: Case Studies
Case Study 1 : V-System (Stanford)

• State-change driven information policy
– Significant change in CPU/memory utilization is broadcast to

all other nodes
• M least loaded nodes are receivers, others are senders
• Sender-initiated with new job selection policy
• Location policy: probe random receiver from M, if still

receiver, transfer job, else try another

!12

Computer Science Lecture 4, page CS677: Distributed OS

Case study 2: Sprite (Berkeley)

• Workstation environment => owner is king!
• Centralized information policy: coordinator keeps info

– State-change driven information policy
– Receiver: workstation with no keyboard/mouse activity for 30

seconds and # active processes < number of processors
• Selection policy: manually done by user => workstation

becomes sender
• Location policy: sender queries coordinator
• WS with foreign process becomes sender if user

becomes active: selection policy=> home workstation

!13

Computer Science Lecture 4, page CS677: Distributed OS

Sprite (contd)

• Sprite process migration
– Facilitated by the Sprite file system
– State transfer

• Swap everything out
• Send page tables and file descriptors to receiver
• Demand page process in
• Only dependencies are communication-related

– Redirect communication from home WS to receiver

!14

Computer Science Lecture 4, page

Case Study 3 : Volunteer Computing

• Internet scale operating system (ISOS)
– Harness compute cycles of thousands of PCs on the Internet
– PCs owned by different individuals
– Donate CPU cycles/storage when not in use (pool resouces)
– Contact coordinator for work
– Coordinator: partition large parallel app into small tasks
– Assign compute/storage tasks to PCs

• Examples: Seti@home, BOINC, P2P backups
– Volunteer computing

!15

Computer Science Lecture 4, page

Distributed Scheduling Today

• Scheduling tasks in a cluster of servers

• Schedule batch jobs: Condor

• Schedule web requests in replicated servers

!16

Computer Science Lecture 4, page

Case study 4 : Condor

• Condor: use idle cycles on workstations in a LAN
• Used to run large batch jobs, long simulations
• Idle machines contact condor for work
• Condor assigns a waiting job
• User returns to workstation => suspend job, migrate

– supports process migration
• Flexible job scheduling policies
• Sun Grid Engine: similar features as Condor

– Evolved into cluster batch schedulers (SGE, DQS…)
• SLURM scheduler on UMass Swarm cluster

!17

Computer Science Lecture 4, page

Case study 5: Replicated Web Server

• Distributed scheduling in large web servers:
– N nodes, one node acts as load balancing switch
– other nodes are replicas

• Requests arrive at the load balancer queue
– Scheduled onto a replica

• Simple policies: least loaded, round robin

• Session-based versus request-based polices
– Will revisit this topic when studying WWW

!18

