
CMPSCI 677 Operating Systems Spring 2019

Lecture 3: January 30
Professor: Prashant Shenoy Scribe: Josh Sennett

3.1 Overview

This lecture covered the following topics.

Module 1: Processes Review

Module 2: Introduction to Threads

Module 3: User-Level versus Kernel-Level Threads

3.2 Lecture Notes

3.2.1 Module 1: Processes Review

3.2.1.1 Review of Processes

Multiprogramming refers to multiple processes running concurrently in a single processor. Operating
Systems virtualize the CPU, providing concurrent access to a single processor via time-sharing which
creates the illusion of parallelism. Multiprocessing, on the other hand, refers to using multiple processors
on a single machine to achieve true parallelism.

The Process Control Block (PCB) is a kernel data structure that keeps track of current processes. It
has data about active processes, such as how much memory is allocated to each and where memory pages
are stored in RAM for each process. Each process has its own address space with its corresponding code,
global and local variables, stack, and heap.

Process State Transitions refer to the states a process may be in at any given time, including:

• New (newly created)

• Running (currently running on the CPU)

• Waiting (waiting for something, such as I/O, an event, or a lock)

• Ready (waiting for its turn to run on the CPU)

• Finished (terminated, to be cleaned up)

3-1



3-2 Lecture 3: January 30

3.2.2 Uniprocessor Scheduling

Scheduling refers to the policy of the operating system in choosing which process to run next on the CPU
among all processes that are ready to execute. Different scheduling policies optimize different performance
metrics, and no single scheduling policy can optimize all metrics together.

Common uniprocessor scheduling policies include:

• Round-robin: Each process gets a quantum of time in CPU. Processes are executed in a circular order
and without any priority.

• Shortest Job First (SJF): an optimal policy in reducing the average waiting time among processes;
however, it has the limitation that the length of the job needs to be known beforehand.

• First-In First-Out (FIFO): “non-preemptive” scheduling; simple, but it can lead to longer average wait
times due to short processes being stuck in queue behind long processes.

• Lottery Scheduling: This involves random selection of which processes runs next. Users can control
the proportion of time each process gets by deciding on the number of lottery tickets allocated to each
process.

• Earliest Deadline First (EDF): an application decides the deadline for a CPU task. EDF is useful in
real-time systems where time guarantee is important (for example, in video streaming).

3.2.3 Performance Metrics

Typical performance metrics include:

• Throughput of jobs

• CPU utilization

• Turnaround time (completion rate of jobs)

• Response time

• Fairness (all jobs treated equally)

The scheduler needs to be carefully selected based on the desired performance metrics. Improving one metric
may make others worse. For example, one might want to emphasize response time in for an interactive
application, while throughput needs be prioritized over response time in cluster computing.

3.2.3.1 Process Behavior

Processes may be CPU-bound, I/O-bound, or most often, alternate between being CPU-bound and I/O-
bound. CPU bursts refer to the time of CPU usage between two periods of I/O. CPU bursts can be
modeled using a hyperexponential behavior, which is useful when deciding an optimal schedule.



Lecture 3: January 30 3-3

3.2.3.2 Process Scheduling

In a simple priority queue, each job is assigned a priority level. The kernel first looks to the top-most
priority queue that is not empty, and executes processes in the queue until the queue is empty. If the top-
most priority queue is empty, the scheduler will look at a lower level, and so on. The highest priority task
keeps running until it is complete or it goes to do I/O. Kernel tasks usually have higher priority than the
tasks that run in the user space. Priorities can also be assigned among the user applications. For example,
Skype gives higher priority to audio processing.

In multi-level feedback queues (MLFQ), the OS uses a priority queue with round-robin scheduling within
queues and priority scheduling across queues. However, a process’s priority is determined dynamically. When
a new process starts, it is put at the highest priority level; if it uses an entire quantum of its CPU time, its
priority level is lowered. If it does not use its whole time (if it switches to I/O), it is promoted to a higher
priority level.

This scheduler tries to achieve the performance of the shortest job first scheduler. I/O bound processes get
higher priority because they spend relatively short duration of time hogging the CPU. New processes always
get the highest priority. If a process spends the entire time quanta assigned to it, its priority level drops
by 1 and the process moves to the lower-priority queue. If a process does not use entire time slot of CPU,
priority level is increased by 1 and the process moves to the higher-priority queue. This results in I/O bound
jobs always moving to the highest-priority queue. This scheduler is implementing shortest job first without
a prior knowledge of the job length. The assumption is that the I/O bound jobs are shortest because I/O
operations are not executed on CPU. Priorities for a job changes every quantum depending on whether the
job spent its last time quantum doing computation or I/O.

3.2.3.3 Process vs. Threads

Traditional processes have one stream of execution and are also called single-threaded. But, a process can
also have multiple streams of execution if it is multi-threaded. A thread is is a flow of control through an
address space; each thread gets its own registers, including its own program counter (PC). Two threads
of a single process share a heap and code, but not necessarily the stack.

3.2.3.4 Why use threads?

Multithreading allows for concurrency within a single process. In a a uniprocessor machine, threads achieve
concurrency through time-sharing of the CPU. Even on a single processor, this can cause a process to
improve in performance, because while one thread is doing I/O, another thread can execute on the CPU.
On a multiprocessor machine, threads can be run truly in parallel by running simultaneously on different
cores and can therefore improve performance. Today, most systems (such as smartphones and laptops) have
multiple cores.

Threads allow faster execution of processes by being scheduled on additional cores independently. Creating
and switching to a thread is more efficient than creating or switching to a process due to the lower overhead
cost of context switches. In addition, threads have full access to the address space which give programmers
greater flexibility, allowing for shared data rather than message passing. Another important advantage of
a multi-threaded process compared to a single threaded process is that the entire process does not block in
case of I/O. In a multi-threaded process, other threads can continue to make progress while the thread doing
I/O blocks.

In between single- and multi-threaded programming, there is finite-state machine (event-based) program-
ming. Event-based programming attempts to achieve concurrency with a single threaded process, using



3-4 Lecture 3: January 30

non-blocking calls and asynchronous communication (which is more complex to program).

From a software engineering perspective, writing multi-threaded applications is more challenging because a
developer has to deal with event-based or blocking system calls which need to take care of the rest of the task
when a thread finishes its execution. In comparison, writing a single-threaded application already assumes
that all data is there at the moment of the next task execution. An example of such case could be reading
a text file.

Examples for use of multi-threaded programs include browser actions such as clicking on a link for a web
page. Upon clicking on a web link, images can be sequentially downloaded from the server then sent to be
parses and then rendered. In a multi-threaded browser, images can be downloaded in parallel while the page
is parsed and parts are rendered as they are ready. The browser does not have to wait for everything to be
downloaded and parsed before rendering; as a result, the user will see parts of the page more quickly.

Multithreading is also used within servers. If a server only runs a single thread, it might have a queue of
requests from clients which are blocked until the first request is completed. Using a pool of threads allows
the server to respond to multiple requests simultaneously, thereby reducing latency. The idea is for the server
to have a dispatcher and a few worker threads. When a client request comes in, the dispatcher assigns one
of the idle worker threads to handle this requests. Efficiency is achieved because some of the worker threads
are I/O bound and some are doing computation.

3.2.3.5 Thread Management

When programming with threads, developers can use synchronization primitives (such as locks, mutexes,
or semaphores) to protect from shared access conflicts. For example, synchronization primitives prevent two
threads from updating an object at the same time (in which one tramples the changes of the other). Without
using these, programs may have race conditions in which concurrent operations have non-deterministic
behavior, which can cause unexpected behavior or bugs which are difficult to find and resolve.

3.2.4 Module 3: User-Level vs Kernel-Level Threads

There are two types of threads: kernel-level threads (created and managed by the kernel) and user-level
threads (created and managed by user libraries). For user-level threads, the entire functionality of threads
is implemented in the user library. The kernel is unaware of there being multiple threads; the kernel sees
the address space of the threads as a traditional single-threaded process. Whenever the thread as a process
gets scheduled by the kernel, the user-level library will run and pick a thread with its own thread-scheduling
technique. So the scheduling now becomes a two-level process: scheduling a process by the kernel and picking
a thread to run by the user-level library. Creation of threads is very lightweight because it doesn’t require
system calls. It is also flexible because the developer can customize the scheduler rather than relying on
the OS’s scheduler. However, if any thread makes a blocking call, the entire process (all of its threads) will
be blocked. Since the kernel is unaware of other threads, there is no real parallelism that can be achieved
through multiple cores.

The operating system is aware of kernel-level threads, and can schedule them explicitly in the same way
that it can schedule processes. The advantages of kernel-level threads are that they allow for real parallelism
between threads, and only a single layer of scheduling is needed. The disadvantages, however, are that they
are more expensive (requiring context switches), and less flexible (since they must use the OS’s scheduling
policy).



Lecture 3: January 30 3-5

3.2.4.1 Scheduler Activation

Scheduler Activation tries to bridge the gap between user- and kernel-level threads. Scheduler activation is
a mechanism for providing kernel-level thread functionality with user-level thread flexibility and performance.
The library explicitly tells the kernel of the number of threads; while there is still no true parallelism, this
allows for concurrency: you do not need to block a process just because a thread blocks.

3.2.4.2 Light-Weight Processes

Light-weight processes (LWP) are an abstraction between processes and threads, originally used in
Solaris and some UNIX systems. For each process, the developer specifies the number of schedulable entities,
and maps threads to entities. Schedulable entities are scheduled by the kernel like processes, while threads
mapped to an entity are scheduled at the user level. You may have multiple LWPs per process, and depending
on the mapping of threads to LWPs, the developer can decide the level of parallelism in a process. At the
two ends of the spectrum, 1:1 mapping of threads to LWPs is similar to kernel-level threading, since each
thread will be scheduled by the operating system and can be scheduled concurrently; N:1 mapping, in which
all threads of a process are mapped to a single LWP, is similar to user-level threading.


