Last Class: Classical Problems in
Distributed Systems

* Time ordering and clock synchronization
« GPS
* Logical Clocks

L]-'s’ Computer Science CS677: Distributed OS Lecture 13, page |

Today: More Classical Problems

Logical and Vector Clocks

Distributed Snapshots

Termination Detection

Leader election

Mutual exclusion

& ¥ J computer Science CS677: Distributed OS Lecture 13, page 2

Logical Clocks

* For many problems, internal consistency of clocks is
important
— Absolute time is less important
— Use logical clocks
« Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order in
which events occur rather than the #ime at which they occurred

Compu‘l‘er‘ Science CS677: Distributed OS Lecture 13, page 3

Event Ordering

* Problem: define a total ordering of all events that occur
in a system

* Events 1n a single processor machine are totally ordered
* In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
» Key idea [Lamport]

— Processes exchange messages

— Message must be sent before received
— Send/receive used to order events (and synchronize clocks)

Compu'l'er‘ Science CS677: Distributed OS Lecture 13, page 4

Happened Before Relation

* If 4 and B are events in the same process and 4 executed before B,
then 4 -> B

* If A represents sending of a message and B is the receipt of this
message, then A -> B
« Relation is transitive:
— A>BandB->C ==A->C
* Relation is undefined across processes that do not exchange
messages
— Partial ordering on events

J Computer Science CS677: Distributed OS Lecture 13, page 5

Event Ordering Using HB

* Goal: define the notion of time of an event such that
— If A-=> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, =or > C(B)

* Solution:
— Each processor maintains a logical clock LC,

— Whenever an event occurs locally at I, LC,= LC,+1
— When i sends message to j, piggyback Lc;

— When j receives message from i
« If LG, <LC, then LC,; = LC, +1 else do nothing

— Claim: this algorithm meets the above goals

POE Moo

& %,

@

b |7

-y &

é \K 5
L

Computer Science CS677: Distributed OS Lecture 13, page 6

Lamport’s Logical Clocks

0 0 0 '31 (F;Z 53
6l my |8 B) U == I S R St
.................. 6 m 8 10
iz e 20 i 2
18 o4l ms 80| 000 mEl Bl e e
------------ N 18 241 mp |30
2 & 40, 2i @ e
30 40 50 30 |P2 adjusts | 40 50
36 48 60 36| itsclock |48 60
""""""""""""""" \ . - T
42 56« ™, |70 42 o1 s |70
48 64 80 48 69 80
s M |72 90 Gor ™ |77 9%
60 80 100 76 P, adjusts 85 100
its clock
(a) (b)
(-] 5/ Computer Science CS677: Distributed OS Lecture 13, page 7

Total Order

 Create total order by attaching process number to an
event. If time stamps match, use process # to order

Pl P2~ p3

ael.l ¢ J 1.2

be2.1 jel3
3.2

C

3.1 '/ko 2.3
4.1 & ®742

h @ 5.2 1 ® 3.3
6.2

' Hcomputer Science CS677: Distributed OS Lecture 12, page g

Example: Totally-Ordered Multicasting

« Updating a replicated database and leaving it in an inconsistent
state. -

— only need to order messages (no need to compare local events)
— send every message to all nodes.

% Update1 Update 2 _i

. i tab .
Update 1 is Replicated database Update 2 is
performed before performed before
update 2 update 1
)/ § Computer Science CS677: Distributed OS Lecture 13, page 9

Algorithm

e Totally ordered multicasting for banking example
e Update is timestamped with sender’s logical time
o Update message is multicast (including to sender)

o When message 1s received
= [t is put into local queue
* Ordered according to timestamp,
= Multicast acknowledgement
= Message is delivered
= [t is at the head of the queue
= IT has been acknowledged by all processes
= P 1sends ACK to P_jif
- P_1 has not made a request
- P _1update has been processed and P i’s ID > P j’s Id

» § Computer Science CS677: Distributed OS Lecture 12, page 10

Causality

« Lamport’s logical clocks
— If 4-> Bthen C(4) < C(B)
— Reverse is not true!!
» Nothing can be said about events by comparing time-stamps!
* If C(4) < C(B), then ??
* Need to maintain causality
— If'a -> b then a is casually related to b
— Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes

— Need a time-stamping mechanism such that:
» If T(4) < T(B) then A should have causally preceded B

J Computer Science CS677: Distributed OS Lecture 13, page 11

Vector Clocks

 Each process i maintains a vector V,

— V.[i] : number of events that have occurred at 1

— V.[j] : number of events I knows have occurred at process j
 Update vector clocks as follows

— Local event: increment V [I]

— Send a message :piggyback entire vector V

— Receipt of a message: V/k] = max(V,[k],V [k])

* Receiver is told about how many events the sender knows
occurred at another process k&

o Also Vi[i] = Vi[i]+1

« Exercise: prove that if V(4A)<V(B), then 4 causally
precedes B and the other way around.

J Computer Science CS677: Distributed OS Lecture 13, page 12

Enforcing Causal Communication

* Figure 6-13. Enforcing causal communication.
VG, = (1,0,0) VC, = (1,1,0)

0 1]

VC,=(0,00) VC,=(1,0,0)

(1)) Computer Science CS677: Distributed OS Lecture 13, page 13

Global State

Global state of a distributed system

— Local state of each process
— Messages sent but not received (state of the queues)

Many applications need to know the state of the system
— Failure recovery, distributed deadlock detection

Problem: how can you figure out the state of a
distributed system?

— Each process is independent

— No global clock or synchronization

Distributed snapshot: a consistent global state

(1)) Computer Science CS677: Distributed OS Lecture 13, page 14

Global State (1)

Consistent cut Inconsistent cut

Time —V

/‘ \ 3

. m
P3 X

Sender of m2 cannot
be identified with this cut

(@) (b)

a) A consistent cut
b) An inconsistent cut

S,

£ N

Z W“? i
*5\:’

Computer Science CS677: Distributed OS Lecture 13, page 15

Distributed Snapshot Algorithm

Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

Any process can initiate the algorithm

— Checkpoint local state

— Send marker on every outgoing channel

* On receiving a marker

— Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel

- Computer Science CS677: Distributed OS Lecture 13, page 16

Distributed Snapshot

A process finishes when

— It receives a marker on each incoming channel and processes
them all

— State: local state plus state of all channels

— Send state to initiator "
* Any process can initiate snapshot A/ T
— Multiple snapshots may be in progress w c

 Each is separate, and each is distinguished by tagging'the
marker with the initiator ID (and sequence number)

| Computer Science CS677: Distributed OS Lecture 13, page 17

Snapshot Algorithm Example

Incoming Qutgoing
message Process — State message

e \Eé/
Q[|}»

— Local
filesystem

Marker

(@)

a) Organization of a process and channels for a distributed snapshot

| Computer Science CS677: Distributed OS Lecture 13, page 18

Snapshot Algorithm Example

> >
E IEI Q ‘Ml ! [M] El Q D » AD'D_D'»'/_—\TF_DD)
(I (I]
S S th@@d@

state

(b) (©) (d)

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message

d) O receives a marker for its incoming channel and finishes recording the state
of the incoming channel

- Computer Science CS677: Distributed OS Lecture 13, page 19

Termination Detection

* Detecting the end of a distributed computation
* Notation: let sender be predecessor, receiver be successor
* Two types of markers: Done and Continue

 After finishing its part of the snapshot, process Q sends a Done or
a Continue to its predecessor
* Send a Done only when
— All of O’s successors send a Done

— O has not received any message since it check-pointed its local state and
received a marker on all incoming channels

— Else send a Continue

« Computation has terminated if the initiator receives Done
messages from everyone

*?% Computer Science CS677: Distributed OS Lecture 13, page 20

Election Algorithms

* Many distributed algorithms need one process to act as
coordinator

— Doesn’t matter which process does the job, just need to pick
one

 Election algorithms: technique to pick a unique
coordinator (aka leader election)

» Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

» Types of election algorithms: Bully and Ring algorithms

: Computer Science CS677: Distributed OS Lecture 13, page 2]

Bully Algorithm

» Each process has a unique numerical ID

* Processes know the Ids and address of every other
process

 Communication 1s assumed reliable
* Key Ildea: select process with highest ID

* Process initiates election if it just recovered from failure
or if coordinator failed

* 3 message types: election, OK, I won

 Several processes can initiate an election simultaneously
— Need consistent result

* (O(n?) messages required with n processes

3 Computer Science CS677: Distributed OS Lecture 13, page 22

Bully Algorithm Details

* Any process P can initiate an election

* P sends Election messages to all process with higher Ids
and awaits OK messages

* If no OK messages, P becomes coordinator and sends /
won messages to all process with lower Ids

 Ifitreceives an OK, it drops out and waits for an / won

 If a process receives an Election msg, it returns an OK
and starts an election

 [If a process receives a I won, it treats sender an
coordinator

§l Computer Science CS677: Distributed OS Lecture 13, page 23

Bully Algorithm Example

ry“o“v
Election /
=]

Previous coordinator
has crashed

@) (b) ©

POE M

& 2

@

b [T

Ly E

@ & Y-,
@z

Computer Science CS677: Distributed OS Lecture 13, page 24

Bully Algorithm Example

d) .
0 @Uq
(“ (&)
(o) (2)

CS677: Distributed OS

