Last Class: Classical Problems in
Distributed Systems

* Time ordering and clock synchronization
« GPS
* Logical Clocks
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Today: More Classical Problems

Logical and Vector Clocks

Distributed Snapshots

Termination Detection

Leader election

Mutual exclusion
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Logical Clocks

* For many problems, internal consistency of clocks is
important
— Absolute time is less important
— Use logical clocks
« Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order in
which events occur rather than the #ime at which they occurred

Compu‘l‘er‘ Science CS677: Distributed OS Lecture 13, page 3

Event Ordering

* Problem: define a total ordering of all events that occur
in a system

* Events 1n a single processor machine are totally ordered
* In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
» Key idea [Lamport ]

— Processes exchange messages

— Message must be sent before received
— Send/receive used to order events (and synchronize clocks)

Compu'l'er‘ Science CS677: Distributed OS Lecture 13, page 4



Happened Before Relation

* If 4 and B are events in the same process and 4 executed before B,
then 4 -> B

* If A represents sending of a message and B is the receipt of this
message, then A -> B
« Relation is transitive:
— A>BandB->C ==A->C
* Relation is undefined across processes that do not exchange
messages
— Partial ordering on events
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Event Ordering Using HB

* Goal: define the notion of time of an event such that
— If A-=> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, =or > C(B)

* Solution:
— Each processor maintains a logical clock LC,

— Whenever an event occurs locally at I, LC,= LC,+1
— When i sends message to j, piggyback Lc;

— When j receives message from i
« If LG, <LC, then LC,; = LC, +1 else do nothing

— Claim: this algorithm meets the above goals
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Lamport’s Logical Clocks
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Total Order

 Create total order by attaching process number to an
event. If time stamps match, use process # to order
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Example: Totally-Ordered Multicasting

« Updating a replicated database and leaving it in an inconsistent
state. -

— only need to order messages (no need to compare local events)
— send every message to all nodes.

% Update1 Update 2 _i

. i tab .
Update 1 is Replicated database Update 2 is
performed before performed before
update 2 update 1
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Algorithm

e Totally ordered multicasting for banking example
e Update is timestamped with sender’s logical time
o Update message is multicast (including to sender)

o When message 1s received
= [t is put into local queue
* Ordered according to timestamp,
= Multicast acknowledgement
= Message is delivered
= [t is at the head of the queue
= IT has been acknowledged by all processes
= P 1sends ACK to P_jif
- P_1 has not made a request
- P _1update has been processed and P i’s ID > P j’s Id
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Causality

« Lamport’s logical clocks
— If 4-> Bthen C(4) < C(B)
— Reverse is not true!!
» Nothing can be said about events by comparing time-stamps!
* If C(4) < C(B), then ??
* Need to maintain causality
— If'a -> b then a is casually related to b
— Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes

— Need a time-stamping mechanism such that:
» If T(4) < T(B) then A should have causally preceded B
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Vector Clocks

 Each process i maintains a vector V,

— V.[i] : number of events that have occurred at 1

— V.[j] : number of events I knows have occurred at process j
 Update vector clocks as follows

— Local event: increment V [I]

— Send a message :piggyback entire vector V

— Receipt of a message: V/k] = max( V,[k],V [k] )

* Receiver is told about how many events the sender knows
occurred at another process k&

o Also Vi[i] = Vi[i]+1

« Exercise: prove that if V(4A)<V(B), then 4 causally
precedes B and the other way around.
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Enforcing Causal Communication

* Figure 6-13. Enforcing causal communication.
VG, = (1,0,0) VC, = (1,1,0)

0 1 ]

VC,=(0,00) VC,=(1,0,0)
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Global State

Global state of a distributed system

— Local state of each process
— Messages sent but not received (state of the queues)

Many applications need to know the state of the system
— Failure recovery, distributed deadlock detection

Problem: how can you figure out the state of a
distributed system?

— Each process is independent

— No global clock or synchronization

Distributed snapshot: a consistent global state
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Global State (1)

Consistent cut Inconsistent cut
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Distributed Snapshot Algorithm

Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

Any process can initiate the algorithm

— Checkpoint local state

— Send marker on every outgoing channel

* On receiving a marker

— Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel
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Distributed Snapshot

A process finishes when

— It receives a marker on each incoming channel and processes
them all

— State: local state plus state of all channels

— Send state to initiator "
* Any process can initiate snapshot A/ T
— Multiple snapshots may be in progress w c

 Each is separate, and each is distinguished by tagging'the
marker with the initiator ID (and sequence number)
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Snapshot Algorithm Example

Incoming Qutgoing
message Process — State message
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— Local
filesystem

Marker

(@)

a)  Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example
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b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message

d) O receives a marker for its incoming channel and finishes recording the state
of the incoming channel
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Termination Detection

* Detecting the end of a distributed computation
* Notation: let sender be predecessor, receiver be successor
* Two types of markers: Done and Continue

 After finishing its part of the snapshot, process Q sends a Done or
a Continue to its predecessor
* Send a Done only when
— All of O’s successors send a Done

— O has not received any message since it check-pointed its local state and
received a marker on all incoming channels

— Else send a Continue

« Computation has terminated if the initiator receives Done
messages from everyone
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Election Algorithms

* Many distributed algorithms need one process to act as
coordinator

— Doesn’t matter which process does the job, just need to pick
one

 Election algorithms: technique to pick a unique
coordinator (aka leader election)

» Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

» Types of election algorithms: Bully and Ring algorithms
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Bully Algorithm

» Each process has a unique numerical ID

* Processes know the Ids and address of every other
process

 Communication 1s assumed reliable
* Key Ildea: select process with highest ID

* Process initiates election if it just recovered from failure
or if coordinator failed

* 3 message types: election, OK, I won

 Several processes can initiate an election simultaneously
— Need consistent result

* (O(n?) messages required with n processes
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Bully Algorithm Details

* Any process P can initiate an election

* P sends Election messages to all process with higher Ids
and awaits OK messages

* If no OK messages, P becomes coordinator and sends /
won messages to all process with lower Ids

 Ifitreceives an OK, it drops out and waits for an / won

 If a process receives an Election msg, it returns an OK
and starts an election

 [If a process receives a I won, it treats sender an
coordinator
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Bully Algorithm Example
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Bully Algorithm Example
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