
Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Last Class: Naming

• Naming
– Distributed naming
– DNS
– LDAP

1

CS677: Distributed OSComputer Science Lecture 11, page

Today: Classical Problems in Distributed
Systems

• Time ordering and clock synchronization (today)

Next few classes:
• Leader election
• Mutual exclusion
• Distributed transactions
• Deadlock detection
• CAP Theorem

2

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

• Distributed systems: each node has own system clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be assigned

an earlier time

3

CS677: Distributed OSComputer Science Lecture 11, page

Physical Clocks: A Primer
• How do you tell time?

– Use astronomical metrics (solar day)
• Accurate clocks are atomic oscillators (one part in 1013)
• Coordinated universal time (UTC) – international standard based on atomic

time
– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

• Most clocks are less accurate (e.g., mechanical watches)
– Computers use crystal-based blocks (one part in million)
– Results in clock drift

• Need to synchronize machines with a master or with one another

4

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt in time Δt
– To limit drift to δ => resynchronize every δ/2ρ seconds

5

CS677: Distributed OSComputer Science Lecture 11, page

Cristian’s Algorithm

• Synchronize machines to a
time server with a UTC
receiver

• Machine P requests time from
server every δ/2ρ seconds
– Receives time t from server, P

sets clock to t+treply where treply
is the time to send reply to P

– Use (treq+treply)/2 as an estimate
of treply

– Improve accuracy by making a
series of measurements

6

CS677: Distributed OSComputer Science Lecture 11, page

Berkeley Algorithm

• Used in systems without UTC receiver
– Keep clocks synchronized with one another
– One computer is master, other are slaves
– Master periodically polls slaves for their times

• Average times and return differences to slaves
• Communication delays compensated as in Cristian’s algo

– Failure of master => election of a new master

7

CS677: Distributed OSComputer Science Lecture 11, page

Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

8

CS677: Distributed OSComputer Science Lecture 11, page

Distributed Approaches

• Both approaches studied thus far are centralized
• Decentralized algorithms: use resync intervals

– Broadcast time at the start of the interval
– Collect all other broadcast that arrive in a period S
– Use average value of all reported times
– Can throw away few highest and lowest values

• Approaches in use today
– rdate: synchronizes a machine with a specified machine
– Network Time Protocol (NTP) - discussed in next slide

• Uses advanced techniques for accuracies of 1-50 ms

9

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Network Time Protocol

• Widely used standard - based on Cristian’s algo
– Uses eight pairs of delays from A to B and B to A.

• Hierarchical – uses notion of stratum
• Clock can not go backward

10

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Global Positioning System

• Computing a position in a two-dimensional space.

11

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Global Positioning System

• Real world facts that complicate GPS

• It takes a while before data on a
satellite’s position reaches the
receiver.

• The receiver’s clock is generally not
in synch with that of a satellite.

12

Computer Science Lecture 12, page CS677: Distributed OS

GPS Basics

• Dr – deviation of receiver from actual time

• Beacon with timestamp Ti received at Tnow
– Delay Di = (Tnow – Ti) + Dr
– Distance di = c (Tnow- Ti)
– Also di = sqrt[(xi-xr)2 + (yi-yr)2 + (zi-zr)2]

• Four unknowns, need 4 satellites.

•

CS677: Distributed OS 13

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Clock Synchronization in Wireless Networks

• Reference broadcast sync (RBS): receivers synchronize with one
another using RB server
– Mutual offset = Ti,s- Tj,s (can average over multiple readings)

14

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Logical Clocks

• For many problems, internal consistency of clocks is
important
– Absolute time is less important
– Use logical clocks

• Key idea:
– Clock synchronization need not be absolute
– If two machines do not interact, no need to synchronize them
– More importantly, processes need to agree on the order in

which events occur rather than the time at which they occurred

15

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Event Ordering

• Problem: define a total ordering of all events that occur
in a system

• Events in a single processor machine are totally ordered
• In a distributed system:

– No global clock, local clocks may be unsynchronized
– Can not order events on different machines using local times

• Key idea [Lamport]
– Processes exchange messages
– Message must be sent before received
– Send/receive used to order events (and synchronize clocks)

16

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Happened Before Relation

• If A and B are events in the same process and A executed before B,
then A -> B

• If A represents sending of a message and B is the receipt of this
message, then A -> B

• Relation is transitive:
– A -> B and B -> C => A -> C

• Relation is undefined across processes that do not exchange
messages
– Partial ordering on events

17

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Event Ordering Using HB

• Goal: define the notion of time of an event such that
– If A-> B then C(A) < C(B)
– If A and B are concurrent, then C(A) <, = or > C(B)

• Solution:
– Each processor maintains a logical clock LCi
– Whenever an event occurs locally at I, LCi = LCi+1
– When i sends message to j, piggyback Lci
– When j receives message from i

• If LCj < LCi then LCj = LCi +1 else do nothing
– Claim: this algorithm meets the above goals

18

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Lamport’s Logical Clocks

19

Computer Science Lecture 12, page CS677: Distributed OS

Total Order
• Create total order by attaching process number to an

event. If time stamps match, use process # to order

20

a

b

P1 P2 P3

c
d

e

f

g

h

i

j

k

l

1.1 1.2
1.32.1

3.2
2.33.1

4.1 4.2

5.2

6.2

3.3

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Example: Totally-Ordered Multicasting

• Updating a replicated database and leaving it in an inconsistent
state.

21

Computer Science Lecture 12, page CS677: Distributed OS

Algorithm
● Totally ordered multicasting for banking example

● Update is timestamped with sender’s logical time

● Update message is multicast (including to sender)

● When message is received
■ It is put into local queue
■ Ordered according to timestamp,
■ Multicast acknowledgement

■ Message is delivered
■ It is at the head of the queue
■ IT has been acknowledged by all processes
■ P_i sends ACK to P_j if

– P_i has not made a request
– P_i update has been processed and P_i’s ID > P_j’s Id

22

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Causality

• Lamport’s logical clocks
– If A -> B then C(A) < C(B)
– Reverse is not true!!

• Nothing can be said about events by comparing time-stamps!
• If C(A) < C(B), then ??

• Need to maintain causality
– If a -> b then a is casually related to b
– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
– Capture causal relationships between groups of processes
– Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

23

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Vector Clocks
• Each process i maintains a vector Vi

– Vi[i] : number of events that have occurred at i
– Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows
– Local event: increment Vi[I]
– Send a message :piggyback entire vector V
– Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows
occurred at another process k

• Also Vj[i] = Vj[i]+1
• Exercise: prove that if V(A)<V(B), then A causally

precedes B and the other way around.
24

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Enforcing Causal Communication

• Figure 6-13. Enforcing causal communication.

25

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Global State

• Global state of a distributed system
– Local state of each process
– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system
– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a
distributed system?
– Each process is independent
– No global clock or synchronization

• Distributed snapshot: a consistent global state

26

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Global State (1)

a) A consistent cut
b) An inconsistent cut

27

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Distributed Snapshot Algorithm

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

• On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
– Subsequent marker on a channel: stop saving state for that

channel

28

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Distributed Snapshot

• A process finishes when
– It receives a marker on each incoming channel and processes

them all
– State: local state plus state of all channels
– Send state to initiator

• Any process can initiate snapshot
– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

29

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot

30

Computer Science Lecture 12, page CS677: Distributed OSCS677: Distributed OS

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the state

of the incoming channel

31

Computer Science Lecture 14, page CS677: Distributed OS

Termination Detection

• Detecting the end of a distributed computation
• Notation: let sender be predecessor, receiver be successor
• Two types of markers: Done and Continue
• After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
• Send a Done only when

– All of Q’s successors send a Done
– Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone

32

