Last Class

* Naming
— Distributed naming
— DNS
— LDAP

& i’ § Computer Science

CS677: Distributed OS

: Naming

Lecture 12, page |

Today: Classical Problems in Distributed
Systems

* Time ordering and clock synchronization (today)

Next few classes:
e Leader election

Mutual exclusion

Distributed transactions
Deadlock detection
CAP Theorem

)/ J Computer Science

CS677: Distributed OS

Lecture 11, page 2

Clock Synchronization

* Time in unambiguous in centralized systems
— System clock keeps time, all entities use this for time
* Distributed systems: each node has own system clock

— Crystal-based clocks are less accurate (1 part in million)

— Problem: An event that occurred after another may be assigned
an earlier time

Computer on 2144 2145 2146 2147 <«4— Time according
which compiler + | - } to local clock
runs AN

output.o created

Computer on 2142 2143 2144 2145 «— Time according
which editor 1 + } | to local clock
runs

output.c created

: omputer Science CS677: Distributed OS Lecture 11, page 3

Physical Clocks: A Primer

How do you tell time?

— Use astronomical metrics (solar day)

Accurate clocks are atomic oscillators (one part in 1013)

Coordinated universal time (UTC) — international standard based on atomic
time

— Add leap seconds to be consistent with astronomical time

— UTC broadcast on radio (satellite and earth)

— Receivers accurate to 0.1 — 10 ms

Most clocks are less accurate (e.g., mechanical watches)
— Computers use crystal-based blocks (one part in million)
— Results in clock drift
Need to synchronize machines with a master or with one another

) Computer Science CS677: Distributed OS Lecture 11, page 4

Clock Synchronization

« Each clock has a maximum drift rate p
e 1-p <=dC/dt <= 1+p
— Two clocks may drift by 2p At in time At
— To limit drift to 8 => resynchronize every d/2p seconds

Clock time, C d,t dc _ 1

& e dt
o O
(}O C}O

p’\' QC’}‘ dC <1
g (ot
&0~
UTC, t
: Computer Science CS677: Distributed OS Lecture 11, page 5

Cristian’s Algorithm

* Synchronize machines to a
time server with a UTC
receiver

process P time server

* Machine P requests time from
server every 0/2p seconds treq

— Receives time ¢ from server, P tepy
sets clock to t+¢,,, where 1, Y
is the time to send reply to P

— Use (t,,,11,,,,)/2 as an estimate

req ' ‘rep
of Z‘reply

— Improve accuracy by making a
series of measurements

time

network

?% Computer Science CS677: Distributed OS Lecture 11, page 6

Berkeley Algorithm

« Used in systems without UTC receiver
— Keep clocks synchronized with one another
— One computer is master, other are slaves
— Master periodically polls slaves for their times
 Average times and return differences to slaves
* Communication delays compensated as in Cristian’s algo
— Failure of master => election of a new master

§ Computer Science CS677: Distributed OS Lecture 11, page 7

Berkeley Algorithm

Time daemon
3:00 . 3:00 3:.05
KI 3:00 0

39,,, @ — ‘10/) i S <« +1§-* @ I
| 3:00 | +25 |
| Network| | | | |
O] ||] |D] D
2:50 3:25 2:50 3:25 3:05 3:05
(@) (b) (©

a) The time daemon asks all the other machines for their clock values
b) The machines answer

c) The time daemon tells everyone how to adjust their clock

Computer Science CS677: Distributed OS Lecture 11, page 8

Distributed Approaches

* Both approaches studied thus far are centralized

* Decentralized algorithms: use resync intervals
— Broadcast time at the start of the interval
— Collect all other broadcast that arrive in a period S
— Use average value of all reported times
— Can throw away few highest and lowest values

* Approaches in use today
— rdate: synchronizes a machine with a specified machine

— Network Time Protocol (NTP) - discussed in next slide
 Uses advanced techniques for accuracies of 1-50 ms

J Computer Science CS677: Distributed OS Lecture 11, page 9

Network Time Protocol

dTreq dTres

* Widely used standard - based on Cristian’s algo
— Uses eight pairs of delays from A to B and B to A.

e Hierarchical — uses notion of stratum
=, * Clock can not go backward

J Computer Science CS677: Distributed OS Lecture 12, page 10

Global Positioning System

A
Height
Point to be
ignored
(14,14)

(-6’6)

\\L/ X
r=10

« Computing a position in a two-dimensional space.

: Computer Science CS677: Distributed OS Lecture 12, page 11

Global Positioning System

» Real world facts that complicate GPS

It takes a while before data on a
satellite’s position reaches the
receiver.

» The receiver’s clock 1s generally not
in synch with that of a satellite.

)/ § Computer Science CS677: Distributed OS Lecture 12, page 12

GPS Basics

D, — deviation of recetiver from actual time

Beacon with timestamp T, received at T
— Delay D;=(T,,, —T)+D,
— Distance d, =¢ (T~ T,
— Also d, =sqrt[(x;-x,)? + (y;-y,)?> + (z-2,)?]

Four unknowns, need 4 satellites.

4 Jcomputer Science CS677: Distributed OS Lecture 12, page 13

Clock Synchronization in Wireless Networks

Message preparation

Time spent in NIC

(\ \ e [Delivery time

A — ' \‘japp- —
B \ i
: . :

. N\

Critical path

(b)
» Reference broadcast sync (RBS): receivers synchronize with one
another using RB server

— Mutual offset =T, - T;; (can average over multiple readings)

J Computer Science CS677: Distributed OS Lecture 12, page 14

Logical Clocks

* For many problems, internal consistency of clocks is
important
— Absolute time is less important
— Use logical clocks
+ Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order in
which events occur rather than the time at which they occurred

J Computer Science CS677: Distributed OS Lecture 12, page 15

Event Ordering

* Problem: define a total ordering of all events that occur
in a system

» Events in a single processor machine are totally ordered

* In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
« Key idea [Lamport]

— Processes exchange messages

— Message must be sent before received

— Send/receive used to order events (and synchronize clocks)

J Computer Science CS677: Distributed OS Lecture 12, page 16

Happened Before Relation

If A and B are events in the same process and A4 executed before B,
then 4 -> B

If A represents sending of a message and B is the receipt of this
message, then A -> B

Relation is transitive:
— A>BandB->C =A->C

Relation 1s undefined across processes that do not exchange
messages

— Partial ordering on events

J Computer Science CS677: Distributed OS Lecture 12, page 17

Event Ordering Using HB

* Goal: define the notion of time of an event such that
— If A-> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, = or > C(B)

* Solution:
— Each processor maintains a logical clock LC,

— Whenever an event occurs locally at I, LC,= LC,+1
— When i sends message to j, piggyback Lc;

— When j receives message from i
o If LG, <LC; then LC; = LC; +1 else do nothing

— Claim: this algorithm meets the above goals

POE Moo
& %,
2
b |7
-y &
é \K 5
N

Computer Science CS677: Distributed OS Lecture 12, page 18

Lamport’s Logical Clocks

0 0 0 '31 (F;Z 53
6l my |8 10 000 e s e
.................. 6 m 8 10
iz e 20 i 2
18 o4l ms 80| 000 mEl Bl e e
------------ N 18 241 mp |30
2 & 40, 2i @ e
30 40 50 30 |P2 adjusts | 40 50
36 48 60 36| itsclock |48 60
""""""""""""""" \ . - T
42 56« ™, |70 42 o1 s |70
48 64 80, 48 69 80
s M |72 90 Gor ™ |77 9%
60 80 100 76 P, adjusts 85 100
its clock
(a) (b)
\ y Computer Science CS677: Distributed OS Lecture 12, page 19

Total Order

 Create total order by attaching process number to an
event. If time stamps match, use process # to order

Pl P2~ p3

ael.l ¢ J 1.2

be2.1 jel3
3.2

C

3.1 '/ko 2.3
4.1 & ®742

h @ 5.2 1 ® 3.3
6.2

' Hcomputer Science CS677: Distributed OS Lecture 12, page 20

Example: Totally-Ordered Multicasting

i Update 1 _______!Pﬁ_%t?_?___i

. Replicated database .

Update 1 is P Update 2 is
performed before performed before
update 2 update 1
5 4 Computer Science CS677: Distributed OS Lecture 12, page 2]

Algorithm

e Totally ordered multicasting for banking example
e Update is timestamped with sender’s logical time
o Update message is multicast (including to sender)

o When message 1s received
= [t is put into local queue
* Ordered according to timestamp,
= Multicast acknowledgement
= Message is delivered
= [t is at the head of the queue
= IT has been acknowledged by all processes
= P 1sends ACK to P_jif
- P_1 has not made a request
- P _1update has been processed and P i’s ID > P j’s Id

» § Computer Science CS677: Distributed OS Lecture 12, page 22

Causality

« Lamport’s logical clocks
— If 4-> Bthen C(4) < C(B)
— Reverse is not true!!
» Nothing can be said about events by comparing time-stamps!
* If C(4) < C(B), then ??
* Need to maintain causality
— If'a -> b then a is casually related to b
— Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes

— Need a time-stamping mechanism such that:
» If T(4) < T(B) then A should have causally preceded B

J Computer Science CS677: Distributed OS Lecture 12, page 23

Vector Clocks

 Each process i maintains a vector V,

— V.[i] : number of events that have occurred at 1

— V.[j] : number of events I knows have occurred at process j
 Update vector clocks as follows

— Local event: increment V [I]

— Send a message :piggyback entire vector V

— Receipt of a message: V/k] = max(V,[k],V [k])

* Receiver is told about how many events the sender knows
occurred at another process k&

o Also Vi[i] = Vi[i]+1

« Exercise: prove that if V(4A)<V(B), then 4 causally
precedes B and the other way around.

J Computer Science CS677: Distributed OS Lecture 12, page 24

Enforcing Causal Communication

. VC,=(1,0,0) VC,=(1,1,0)
0 0
F’O l 1

\ 5 Computer Science CS677: Distributed OS Lecture 12, page 25

Global State

Global state of a distributed system
— Local state of each process
— Messages sent but not received (state of the queues)

Many applications need to know the state of the system
— Failure recovery, distributed deadlock detection

Problem: how can you figure out the state of a
distributed system?

— Each process is independent

— No global clock or synchronization

Distributed snapshot: a consistent global state

\ 5 Computer Science CS677: Distributed OS Lecture 12, page 26

Global State (1)

Consistent cut Inconsistent cut

Time —V

/‘ \ 3

. m
P3 X

Sender of m2 cannot
be identified with this cut

(@) (b)

a) A consistent cut
b) An inconsistent cut

) Computer Science CS677: Distributed OS Lecture 12, page 27

Distributed Snapshot Algorithm

» Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

* Any process can initiate the algorithm
— Checkpoint local state
— Send marker on every outgoing channel
* On receiving a marker

— Checkpoint state if first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel

H Computer Science CS677: Distributed OS Lecture 12, page 28

Distributed Snapshot

* A process finishes when

— It receives a marker on each incoming channel and processes
them all

— State: local state plus state of all channels

— Send state to initiator y T

* Any process can initiate snapshot Aw
— Multiple snapshots may be in progress C

» Each is separate, and each 1s distinguished by tagging the
marker with the initiator ID (and sequence number)

| Computer Science CS677: Distributed OS Lecture 12, page 29

Snapshot Algorithm Example

Incoming Qutgoing
message Process — State message

e \Eé/
Q — [I»

— Local
filesystem

Marker

(@)

a) Organization of a process and channels for a distributed snapshot

| Computer Science CS677: Distributed OS Lecture 12, page 30

Snapshot Algorithm Example

o
@ , W o |t
] 7

Recorded
state

(b) (©) (d)

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message

d) O receives a marker for its incoming channel and finishes recording the state
of the incoming channel

H Computer Science CS677: Distributed OS Lecture 12, page 31

Termination Detection

* Detecting the end of a distributed computation
* Notation: let sender be predecessor, receiver be successor
* Two types of markers: Done and Continue

 After finishing its part of the snapshot, process Q sends a Done or
a Continue to its predecessor
* Send a Done only when
— All of O’s successors send a Done

— Q has not received any message since it check-pointed its local state and
received a marker on all incoming channels

— Else send a Continue

* Computation has terminated if the initiator receives Done
messages from everyone

/] Compu'l'er Science CS677: Distributed OS Lecture 14, page 32

