Processes and Threads

- Processes and their scheduling
- Threads and scheduling
- Multiprocessor scheduling
- Distributed Scheduling/migration

CS677: Distributed OS

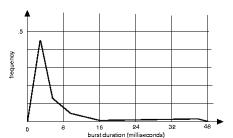
Lecture 3, page 1

Processes: Review

- Multiprogramming versus multiprocessing
- Kernel data structure: process control block (PCB)
- Each process has an address space
 - Contains code, global and local variables..
- Process state transitions
- Uniprocessor scheduling algorithms
 - Round-robin, shortest job first, FIFO, lottery scheduling, EDF
- Performance metrics: throughput, CPU utilization, turnaround time, response time, fairness

Process Behavior

- Processes: alternate between CPU and I/O
- CPU bursts
 - Most bursts are short, a few are very long (high variance)
 - Modeled using hyperexponential behavior
 - If X is an exponential r.v.


•
$$Pr[X \le x] = 1 - e^{-\mu x}$$

•
$$E[X] = 1/\mu$$

- If X is a hyperexponential r.v.

•
$$Pr[X \le x] = 1 - p e^{-\mu 1x} - (1-p) e^{-\mu 2x}$$

•
$$E[X] = p/\mu 1 + (1-p)/\mu 2$$

CS677: Distributed OS

Lecture 3, page 3

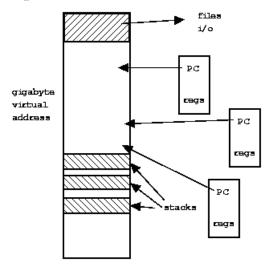
Process Scheduling

- Priority queues: multiples queues, each with a different priority
 - Use strict priority scheduling
 - Example: page swapper, kernel tasks, real-time tasks, user tasks
- Multi-level feedback queue
 - Multiple queues with priority

- Depending on priority/CPU characteristics
- Gives higher priority to I/O bound or interactive tasks
- Lower priority to CPU bound tasks
- Round robin at each level

Processes and Threads

- Traditional process
 - One thread of control through a large, potentially sparse address space
 - Address space may be shared with other processes (shared mem)
 - Collection of systems resources (files, semaphores)
- Thread (light weight process)
 - A flow of control through an address space
 - Each address space can have multiple concurrent control flows
 - Each thread has access to entire address space
 - Potentially parallel execution, minimal state (low overheads)
 - May need synchronization to control access to shared variables



CS677: Distributed OS

Lecture 3, page 5

Threads

- Each thread has its own stack, PC, registers
 - Share address space, files,...

CS677: Distributed OS

Why use Threads?

- Large multiprocessors/multi-core systems need many computing entities (one per CPU or core)
- Switching between processes incurs high overhead
- With threads, an application can avoid per-process overheads
 - Thread creation, deletion, switching cheaper than processes
- Threads have full access to address space (easy sharing)
- Threads can execute in parallel on multiprocessors

CS677: Distributed OS

Lecture 3, page 7

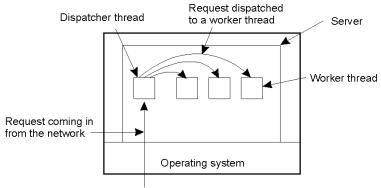
Why Threads?

- Single threaded process: blocking system calls, no concurrency/parallelism
- Finite-state machine [event-based]: non-blocking with concurrency
- *Multi-threaded process:* blocking system calls with parallelism
- Threads retain the idea of sequential processes with blocking system calls, and yet achieve parallelism
- Software engineering perspective
 - Applications are easier to structure as a collection of threads
 - Each thread performs several [mostly independent] tasks

CS677: Distributed OS

Multi-threaded Clients Example : Web Browsers

- Browsers such as IE are multi-threaded
- Such browsers can display data before entire document is downloaded: performs multiple simultaneous tasks
 - Fetch main HTML page, activate separate threads for other parts
 - Each thread sets up a separate connection with the server
 - Uses blocking calls
 - Each part (gif image) fetched separately and in parallel
 - Advantage: connections can be setup to different sources
 - Ad server, image server, web server...



CS677: Distributed OS

Lecture 3, page 9

Multi-threaded Server Example

- Apache web server: pool of pre-spawned worker threads
 - Dispatcher thread waits for requests ("master slave" architecture)
 - For each request, choose an idle worker thread
 - Worker thread uses blocking system calls to service web request

CS677: Distributed OS

Thread Management

- Creation and deletion of threads
 - Static versus dynamic
- Critical sections
 - Synchronization primitives: blocking, spin-lock (busy-wait)
 - Condition variables
- Global thread variables
- Kernel versus user-level threads

CS677: Distributed OS

Lecture 3, page 11

User-level versus kernel threads

- Key issues:
- Cost of thread management
 - More efficient in user space
- Ease of scheduling
- Flexibility: many parallel programming models and schedulers
- Process blocking a potential problem

User-level Threads

- Threads managed by a threads library
 - Kernel is unaware of presence of threads
- Advantages:
 - No kernel modifications needed to support threads
 - Efficient: creation/deletion/switches don't need system calls
 - Flexibility in scheduling: library can use different scheduling algorithms, can be application dependent
- Disadvantages
 - Need to avoid blocking system calls [all threads block]
 - Threads compete for one another
 - Does not take advantage of multiprocessors [no real parallelism]

CS677: Distributed OS

Lecture 3, page 13

User-level threads

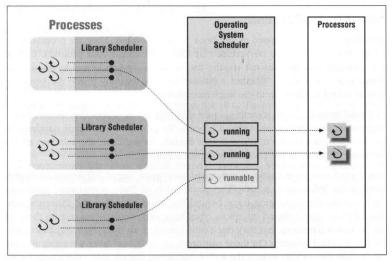


Figure 6-1: User-space thread implementations

Kernel-level threads

- Kernel aware of the presence of threads
 - Better scheduling decisions, more expensive
 - Better for multiprocessors, more overheads for uniprocessors

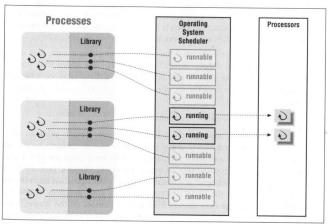


Figure 6-2: Kernel thread-based implementations

CS677: Distributed OS

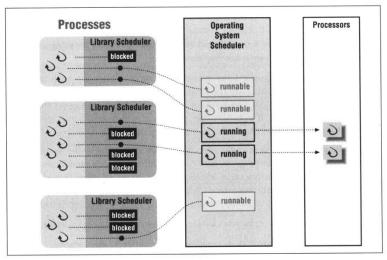
Lecture 3, page 15

Scheduler Activation

- User-level threads: scheduling both at user and kernel levels
 - user thread system call: process blocks
 - kernel may context switch thread during important tasks
- Need mechanism for passing information back and forth
- Scheduler activation: OS mechanism for user level threads
 - Notifies user-level library of kernel events
 - Provides data structures for saving thread context
- Kernel makes up-calls: CPU available, I/O is done etc.
- Library informs kernel: create/delete threads

Performance of user-level threads with behavior of kernel threads

Light-weight Processes


- Several LWPs per heavy-weight process
- User-level threads package
 - Create/destroy threads and synchronization primitives
- Multithreaded applications create multiple threads, assign threads to LWPs (one-one, many-one, many-many)
- Each LWP, when scheduled, searches for a runnable thread [two-level scheduling]
 - Shared thread table: no kernel support needed
- When a LWP thread block on system call, switch to kernel mode and OS context switches to another LWP

CS677: Distributed OS

Lecture 3, page 17

LWP Example

CS677: Distributed OS

Figure 6-3: Two-level scheduler implementations

Thread Packages

- Posix Threads (pthreads)
 - Widely used threads package
 - Conforms to the Posix standard
 - Sample calls: pthread_create,...
 - Typical used in C/C++ applications
 - Can be implemented as user-level or kernel-level or via LWPs
- Java Threads
 - Native thread support built into the language
 - Threads are scheduled by the JVM

CS677: Distributed OS