
Computer Science Lecture 3, page CS677: Distributed OS

Processes and Threads

• Processes and their scheduling
• Threads and scheduling
• Multiprocessor scheduling
• Distributed Scheduling/migration

1

Computer Science Lecture 3, page CS677: Distributed OS

Processes: Review

• Multiprogramming versus multiprocessing
• Kernel data structure: process control block (PCB)
• Each process has an address space

– Contains code, global and local variables..
• Process state transitions
• Uniprocessor scheduling algorithms

– Round-robin, shortest job first, FIFO, lottery scheduling, EDF
• Performance metrics: throughput, CPU utilization,

turnaround time, response time, fairness

2

Computer Science Lecture 3, page CS677: Distributed OS

Process Behavior

• Processes: alternate between CPU and I/O
• CPU bursts

– Most bursts are short, a few are very long (high variance)
– Modeled using hyperexponential behavior
– If X is an exponential r.v.

• Pr [X <= x] = 1 – e-µx
• E[X] = 1/µ

– If X is a hyperexponential r.v.
• Pr [X <= x] = 1 – p e-µ1x -(1-p) e-µ2x
• E[X] = p/ µ1 + (1−p)/ µ2

3

Computer Science Lecture 3, page CS677: Distributed OS

Process Scheduling

• Priority queues: multiples queues, each with a different
priority
– Use strict priority scheduling
– Example: page swapper, kernel tasks, real-time tasks, user tasks

• Multi-level feedback queue
– Multiple queues with priority
– Processes dynamically move from one queue to another

• Depending on priority/CPU characteristics
– Gives higher priority to I/O bound or interactive tasks
– Lower priority to CPU bound tasks
– Round robin at each level

4

Computer Science Lecture 3, page CS677: Distributed OS

Processes and Threads

• Traditional process
– One thread of control through a large, potentially sparse address

space
– Address space may be shared with other processes (shared mem)
– Collection of systems resources (files, semaphores)

• Thread (light weight process)
– A flow of control through an address space
– Each address space can have multiple concurrent control flows
– Each thread has access to entire address space
– Potentially parallel execution, minimal state (low overheads)
– May need synchronization to control access to shared variables

5

Computer Science Lecture 3, page CS677: Distributed OS

Threads

• Each thread has its own stack, PC, registers
– Share address space, files,…

6

Computer Science Lecture 3, page CS677: Distributed OS

Why use Threads?

• Large multiprocessors/multi-core systems need many
computing entities (one per CPU or core)

• Switching between processes incurs high overhead
• With threads, an application can avoid per-process

overheads
– Thread creation, deletion, switching cheaper than processes

• Threads have full access to address space (easy sharing)
• Threads can execute in parallel on multiprocessors

7

Computer Science Lecture 3, page CS677: Distributed OS

Why Threads?

• Single threaded process: blocking system calls, no
concurrency/parallelism

• Finite-state machine [event-based]: non-blocking with
concurrency

• Multi-threaded process: blocking system calls with
parallelism

• Threads retain the idea of sequential processes with
blocking system calls, and yet achieve parallelism

• Software engineering perspective
– Applications are easier to structure as a collection of threads

• Each thread performs several [mostly independent] tasks

8

Computer Science Lecture 3, page CS677: Distributed OS

Multi-threaded Clients Example : Web
Browsers

• Browsers such as IE are multi-threaded
• Such browsers can display data before entire document

is downloaded: performs multiple simultaneous tasks
– Fetch main HTML page, activate separate threads for other

parts
– Each thread sets up a separate connection with the server

• Uses blocking calls
– Each part (gif image) fetched separately and in parallel
– Advantage: connections can be setup to different sources

• Ad server, image server, web server…

9

Computer Science Lecture 3, page CS677: Distributed OS

Multi-threaded Server Example
• Apache web server: pool of pre-spawned worker threads

– Dispatcher thread waits for requests (“master slave” architecture)
– For each request, choose an idle worker thread
– Worker thread uses blocking system calls to service web request

10

Computer Science Lecture 3, page CS677: Distributed OS

Thread Management

• Creation and deletion of threads
– Static versus dynamic

• Critical sections
– Synchronization primitives: blocking, spin-lock (busy-wait)
– Condition variables

• Global thread variables
• Kernel versus user-level threads

11

Computer Science Lecture 3, page CS677: Distributed OS

User-level versus kernel threads

• Key issues:

• Cost of thread management
– More efficient in user space

• Ease of scheduling
• Flexibility: many parallel programming models and

schedulers
• Process blocking – a potential problem

12

Computer Science Lecture 3, page CS677: Distributed OS

User-level Threads
• Threads managed by a threads library

– Kernel is unaware of presence of threads
• Advantages:

– No kernel modifications needed to support threads
– Efficient: creation/deletion/switches don’t need system calls
– Flexibility in scheduling: library can use different scheduling

algorithms, can be application dependent
• Disadvantages

– Need to avoid blocking system calls [all threads block]
– Threads compete for one another
– Does not take advantage of multiprocessors [no real parallelism]

13

Computer Science Lecture 3, page CS677: Distributed OS

User-level threads

14

Computer Science Lecture 3, page CS677: Distributed OS

Kernel-level threads

• Kernel aware of the presence of threads
– Better scheduling decisions, more expensive
– Better for multiprocessors, more overheads for uniprocessors

15

Computer Science Lecture 3, page

Scheduler Activation

• User-level threads: scheduling both at user and kernel levels
– user thread system call: process blocks
– kernel may context switch thread during important tasks

• Need mechanism for passing information back and forth
• Scheduler activation: OS mechanism for user level threads

– Notifies user-level library of kernel events
– Provides data structures for saving thread context

• Kernel makes up-calls : CPU available, I/O is done etc.
• Library informs kernel: create/delete threads

• Performance of user-level threads with behavior of kernel threads
16

Computer Science Lecture 3, page CS677: Distributed OS

Light-weight Processes

• Several LWPs per heavy-weight process
• User-level threads package

– Create/destroy threads and synchronization primitives
• Multithreaded applications – create multiple threads,

assign threads to LWPs (one-one, many-one, many-many)
• Each LWP, when scheduled, searches for a runnable

thread [two-level scheduling]
– Shared thread table: no kernel support needed

• When a LWP thread block on system call, switch to kernel
mode and OS context switches to another LWP

17

Computer Science Lecture 3, page CS677: Distributed OS

LWP Example

18

Computer Science Lecture 3, page CS677: Distributed OS

Thread Packages

• Posix Threads (pthreads)
– Widely used threads package
– Conforms to the Posix standard
– Sample calls: pthread_create,…
– Typical used in C/C++ applications
– Can be implemented as user-level or kernel-level or via LWPs

• Java Threads
– Native thread support built into the language
– Threads are scheduled by the JVM

19

