Processes and Threads

* Processes and their scheduling

« Threads and scheduling

« Multiprocessor scheduling

* Distributed Scheduling/migration

¥ Compu'l'er Science CS677: Distributed OS Lecture 3, page 1|

Processes: Review

* Multiprogramming versus multiprocessing
« Kernel data structure: process control block (PCB)

» Each process has an address space
— Contains code, global and local variables..

* Process state transitions

 Uniprocessor scheduling algorithms
— Round-robin, shortest job first, FIFO, lottery scheduling, EDF

« Performance metrics: throughput, CPU utilization,
turnaround time, response time, fairness

Computer Science CS677: Distributed OS Lecture 3, page 2

Process Behavior

* Processes: alternate between CPU and /O
 CPU bursts

— Most bursts are short, a few are very long (high variance)
— Modeled using hyperexponential behavior

— If X i1s an exponential r.v. 1
e Pr{X<=x]=1-em A
« E[X]=1/u A

— If X i1s a hyperexponential t.v. N -
e PrX<=x]=1-pewx -(I-p)enx ° ° slomoomm” °]

« E[X]=p/ ul + (1-p)/ u2

§l Computer Science CS677: Distributed OS Lecture 3, page 3

Process Scheduling

* Priority queues: multiples queues, each with a different
priority

— Use strict priority scheduling

— Example: page swapper, kernel tasks, real-time tasks, user tasks
« Multi-level feedback queue

— Multiple queues with priority —m

— Processes dynamically move from one queue to another % O

* Depending on priority/CPU characteristics

— Gives higher priority to I/O bound or interactive tasks

— Lower priority to CPU bound tasks

— Round robin at each level

SER

g AN

2

b |7

ey A

7 \K 5
Vl’/j’.

Computer Science CS677: Distributed OS Lecture 3, page 4

Processes and Threads

 Traditional process

— One thread of control through a large, potentially sparse address

space

— Address space may be shared with other processes (shared mem)
— Collection of systems resources (files, semaphores)

* Thread (light weight process)

— A flow of control through an address space

— Each address space can have multiple concurrent control flows
— Each thread has access to entire address space

— Potentially parallel execution, minimal state (low overheads)

— May need synchronization to control access to shared variables

| Computer Science CS677: Distributed OS Lecture 3, page 5

Threads

« Each thread has its own stack, PC, registers

— Share address space, files,...

/ P fila=

ifo

gigabyta

| E—

wvirtual

PC

regs

addrass

\ ~pC
" stacks

| Computer Science CS677: Distributed OS Lecture 3, page 6

Why use Threads?

Large multiprocessors/multi-core systems need many
computing entities (one per CPU or core)

Switching between processes incurs high overhead
With threads, an application can avoid per-process

overheads
— Thread creation, deletion, switching cheaper than processes

Threads have full access to address space (easy sharing)
Threads can execute in parallel on multiprocessors

J Computer Science CS677: Distributed OS Lecture 3, page 7

Why Threads?

Single threaded process: blocking system calls, no
concurrency/parallelism

Finite-state machine [event-based]: non-blocking with
concurrency

Multi-threaded process: blocking system calls with
parallelism

Threads retain the idea of sequential processes with
blocking system calls, and yet achieve parallelism

Software engineering perspective
— Applications are easier to structure as a collection of threads
 Each thread performs several [mostly independent] tasks

J Computer Science CS677: Distributed OS Lecture 3, page 8

Multi-threaded Clients Example : Web
Browsers

* Browsers such as IE are multi-threaded

« Such browsers can display data before entire document
1s downloaded: performs multiple simultaneous tasks

— Fetch main HTML page, activate separate threads for other
parts

— Each thread sets up a separate connection with the server
* Uses blocking calls

— Each part (gif image) fetched separately and in parallel

— Advantage: connections can be setup to different sources
* Ad server, image server, web server...

| Computer Science CS677: Distributed OS Lecture 3, page 9

Multi-threaded Server Example

« Apache web server: pool of pre-spawned worker threads
— Dispatcher thread waits for requests (“master slave’ architecture)
— For each request, choose an idle worker thread
— Worker thread uses blocking system calls to service web request

Request dispatched

Dispatcher thread to a worker thread Server
/

|1+ Worker thread

Request coming in
from the network L

Operating system

| Computer Science CS677: Distributed OS Lecture 3, page 10

Thread Management

* Creation and deletion of threads
— Static versus dynamic

 Critical sections
— Synchronization primitives: blocking, spin-lock (busy-wait)
— Condition variables

* (lobal thread variables

» Kernel versus user-level threads

¥ Compu'l'er Science CS677: Distributed OS Lecture 3, page 11

User-level versus kernel threads

* Key issues:

* Cost of thread management
— More efficient in user space

 Ease of scheduling

* Flexibility: many parallel programming models and
schedulers

* Process blocking — a potential problem

Computer Science CS677: Distributed OS Lecture 3, page 12

User-level Threads

* Threads managed by a threads library

— Kernel is unaware of presence of threads

* Advantages:
— No kernel modifications needed to support threads
— Efficient: creation/deletion/switches don’t need system calls
— Flexibility in scheduling: library can use different scheduling
algorithms, can be application dependent
* Disadvantages
— Need to avoid blocking system calls [all threads block]
— Threads compete for one another
— Does not take advantage of multiprocessors [no real parallelism]

| Computer Science CS677: Distributed OS Lecture 3, page 13

User-level threads

Processes Operating Processors
’ System
Library Scheduler Scheduler

o® u"‘";"""m Pl i | -
O - O @) QJ
§ Ea
OU. I

Figure 6-1: User-space thread implementations

| Computer Science CS677: Distributed OS Lecture 3, page 14

Kernel-level threads

« Kernel aware of the presence of threads
— Better scheduling decisions, more expensive
— Better for multiprocessors, more overheads for uniprocessors

Processes Operating Processors
System
Scheduler
N | mri';;ﬂw
e 4) runnable |
e brm;nna'hqlef
Library T
3 PO . running |- G =
OP. I - 2]
SRR
[runnable |
Library el I rsinnanle |
oY, il riniatls
Figure 6-2: Kernel thread-based implementations
Computer Science CS677: Distributed OS Lecture 3, page15

Scheduler Activation

» User-level threads: scheduling both at user and kernel levels
— user thread system call: process blocks
— kernel may context switch thread during important tasks
* Need mechanism for passing information back and forth
* Scheduler activation: OS mechanism for user level threads
— Notifies user-level library of kernel events
— Provides data structures for saving thread context
« Kernel makes up-calls : CPU available, I/O 1s done etc.
 Library informs kernel: create/delete threads

Performance of user-level threads with behavior of kernel threads

Computer Science Lecture 3, page 16

Light-weight Processes

« Several LWPs per heavy-weight process

« User-level threads package
— Create/destroy threads and synchronization primitives

« Multithreaded applications — create multiple threads,
assign threads to LWPs (one-one, many-one, many-many)

« Each LWP, when scheduled, searches for a runnable
thread [two-level scheduling]

— Shared thread table: no kernel support needed

* When a LWP thread block on system call, switch to kernel
mode and OS context switches to another LWP

Computer Science CS677: Distributed OS Lecture 3, page 17

LWP Example

Processes Operating Processors
et p— System
Scheduler

EE

Figure 6-3: Two-level scheduler implementations

Computer Science CS677: Distributed OS Lecture 3, page 18

Thread Packages

 Posix Threads (pthreads)
— Widely used threads package
— Conforms to the Posix standard
— Sample calls: pthread_create,...
— Typical used in C/C++ applications
— Can be implemented as user-level or kernel-level or via LWPs

 Java Threads
— Native thread support built into the language

— Threads are scheduled by the JVM

§l Computer Science CS677: Distributed OS Lecture 3, page 19

