CMPSCI 677 Operating Systems Spring 2017

Lecture 2: January 24

Lecturer: Prashant Shenoy Scribe: Phuthipong Bovornkeeratiroj

2.1 Lecture 2

Distributed systems fall into one of the architectures teaching in this lecture. It is important to understand
so that we can decide the architecture before implementing a new system.

2.2 Lecture Material

2.2.1 Types of Architectures

2.2.1.1 Layered Architectures

Layer N
A
v
Layer N-1
Request I T Response
flow g flow
v |
Layer 2

A

Y

| Layer 1 |

Figure 2.0: Layered Design Architecture

Layered Architecture looks like stack as seen in Figure 2.0. The system is partitioned into a sequence of layers
and each layer can communicate to only an above or below layer. For example, Layer i can communicate
with Layer i+1 and i-1 but not the others (e.g. Layer i+2). This architecture is especially common in web
applications where this architecture is divided across the client and server.

A common instance of these systems are Multitiered Architectures.

2-1

2.2.1.2 Object Based Architecture

Method call

Lecture 2: January 24

Figure 2.1: Object-based Style

The concept of this architecture is similar to object oriented programming (OOP). As shown in Figure 2.1,
the system can have many objects and each object exposes its own interface which other objects can use it.
All object can communicate with any other object without restriction unlike Layered Architecture.

2.2.1.3 Event-Based Architecture

Component

A
Event delivery

Component

A

7
< Event bus >
A

Publish

Component

Figure 2.2: Event-based Architecture

An Event-based architecture has many components (similar to object) but each component cannot com-
municate with each other directly but they can communicate via event bus. It uses a publish-subscribe
(producer-consumer) paradigm. In this architecture, component that send an event to the event bus is a
publisher, and component that subscribes to certain types of events on the event bus is a subscribers. Each

component will work asynchronously.

There are many kinds of event bus such as memory-based, or disk-based.

Lecture 2: January 24 2-3

2.2.1.4 Shared Data Space

Component Component

Data delivery Publish

Shared (persistent) data space

Figure 2.3: Shared Style

This architecture looks like Event-based architecture but, unlike Event-based architecture, it decouples in
time and space. It can be viewed as a form of a ”Bulletin-board”. The publisher posts a note to the shared
space, and then a subscriber will look for notes of interest. The data that is posted can be in the shared
data space for a while so the subscriber may not get a real-time data. This architecture can be either push
or pull model.

Decoupled in time means the data that is published is not address to anyone in particular. Decoupled in
space means the data that a component can get may not be a real-time data.

2.2.2 Resource-based Architecture

Representational State Transfer (REST) is a popular architecture for web service (API). It has a standard
naming scheme which all services offer same interface (4 HT'TP operation which are GET/PUT/POST/DELETE).

The example in the lecture shows a link to Amazon Web Server S3 which is a simple storage and uses for
web service. The web service may return in JSON format which is a key-value component. XML is another
popular format in the past.

2.2.3 Client-Server Architecture

This is the most popular architecture. Client sends request to server then server sends response back to
client. This is also a multitiered architectures. Application is divided into 3 layers which are User-interface
level, Processing level, and Data level.

Lecture 2: January 24

User-interface
User interface } level !
HTML page
Keyword expression containing list
HTML
generator Processing
Query Ranked list level
generator #— of page titles
Ranking
Database queries algorithm

Web page titles
with meta-information

Database Data level
with Web pages
Figure 2.4: Search Engine Example
Search Engine is a good example of how application layering works.
Multitiered Architectures
Client machine
‘ User interfa’ggl User interface User interface User interface User interface
™D , Applicatio_n_\ Application Application
-------- $"““-~——--___$__> ‘_,,—// Database
B S |
User interface //’”—“, ‘“¢“““"““--——-$ ________
Application Application “A’\pplication | /,/’/“\'
Database Database Database Database [V Database ‘

Server machine

(@) (b) () (d) (e)

Figure 2.5: Client Server Choices

Here, (a) and (b) can represent a browser-based such as web application (e.g. Javascript) but in (a) server
can perform some works on the interface such as error checking or validating the input. (c¢) could be an
instance of a smartphone app, where the application’s backend is usually split between the device and the
server, or game, where the application have to be on both client and server side. Desktop applications
usually follow (d) where only the database is on the server. Lastly, (e) is usually done through caching. For
example, google’s offline mail caches a small subset of the users email locally.

Three-tier Web Application is another good example, where the browser is on the client side, and the
application and its database is on the server side:

browser <+ | — http request <—— app server <—— database

Lecture 2: January 24 2-5

The client’s browser sends a http request to HT'TP server (e.g. apache). HTTP server then sends the request
to the app server (e.g. Python backend) for processing in which it may create a query to the database server.
The database returns data to the app server, which then app server sends the results the HI'TP server which
then forward it to the browser. The sequential nature of this architecture is a type of layer architecture seen
earlier in the lecture.

These tiered architectures can use more or less than 3 layers depending on their setup. In addition, the
divide between user and server is not set in stone. There exists a spectrum of choices shown below with the
dotted line representing the client server divide:

2.2.4 Decentralized Architectures

Decentralized architectures are also known as Peer to Peer (P2P) systems. Unlike the client-server archi-
tecture, each node (peer) can be a client, server, or both with all nodes being mostly equal. They can also
come as structured or unstructured systems. Peer can also come and go at any time unlike server that has
to be there all the time.

2.2.4.1 Chord Architecture (Structured)
Actual node
{145 (1314,15) {0,1} {23

& {3}
{8,9,10,11,12} {2,3,4}
3 Associated)
113 data keys ‘5%
710} 567} 6]

A8
Figure 2.6: Chord Structure

This chord looks like a logical ring topology but the Internet is not a ring so it is an overlay topology. The
high level method used in these types of architectures is a key to value hash. Here, a search string is hashed
into an int (key), and if there is a node in the system that matches the key then go to that node and download
the file.

The chord structure manages leaving by simply assigning the leaving node’s keys to the next node above
it. If ny were to leave, nja would then be responsible for [12,11,10,9,8,7,6,5]. If a node joins, it chooses an
unfilled position from 1 to n and takes a section of the files from the higher node. In our current case, if
ng joins after ny left, ng would be responsible for [8,7,6,5]. As one can see, joins and leaves are symmetric.
Replication or redundancy is used so that when node leaves, the system still works.

2-6 Lecture 2: January 24

Lecturer mentioned about the paper in the class which has more detail about Chord.

https : / /pdos.csail.mit.edu/papers/chord : sigcomm01/chordgsigcomm.pdf

2.2.4.2 Content Addressable Network - CAN (Structured)

Keys associated with

node at (0.6,0.7)
0,1) | 1,1) (0'960‘9)
\ (0.9,0.9) (0.2,0.8)
L] L
(0.2,0.8) (0.6,0.7)
[] []
(0.6,0.7) (0.9,0.6)
Actual node ¢ (0.9,06) >
L] (0.2,0.45)
(0'260'3) (0.7,0.2)
(0.7,0.2) (0.2,0.15) .
[]
(0,0) (1,0)
(a) (b)

Figure 2.7: CAN Structure, with (b) showing a join procedure

As opposed to chords, CANs use a d-dimensional coordinate system. To make illustrations easier, we will
set d = 2 for the rest of this section. Each piece of content in a CAN has 2 identities: < id.z,id.y > or
<filename, filetype>. For examples, filename, ”Foo” may have a different filetype such as .jpg and .txt. This
means that each node is responsible for a rectangular partition of the coordinate space, as seen in Figure 2.6.
The user can have a more fine-grained query in this structure.

Joins and leaves are thus more difficult, as the merging of 2 rectangles is not always a rectangle. If a node
leaves, the system must partition that rectangle to merge it with other already present rectangles. However,
joining involves simply choosing a location (x and y) at random for the node and splitting that rectangle
with the new node.

2.2.4.3 Unstructured P2P Systems

Rather than adhering to some topological protocol such as ring or tree, unstructured topology is defined
by randomized algorithms. Each node picks a random set of nodes, the number of node is based on choice
of degree such as k = 2 means the new node will randomly link to 2 existed nodes, and establishes logical
connections. When a node leaves, the connections are severed and any remaining nodes can establish new
links to offset the lost connections.

Lecture 2: January 24 2-7

Figure 2.8: Search in Unstructured P2P System

Search Search is done by propagating through the graph as seen in Figure 2.7. Here, a query (Q) is passed
to node A, which is then propagated through the network as each node queries its neighbors. Eventually, the
signal is back propagated to the sender. This can easily flood the system, so one can create a hop count limit
to reduce unnecessary traffic. Each time the query is passed to a neighbor, the hop count is decremented.
Upon reaching 0, the node will simply return not found.

Regular peer

Superpeer

Superpeer
network

Figure 2.9: Graph with SuperPeer Structure

SuperPeers A small modification to the completely unstructured P2P system allows for much more effi-
cient communication. The P2P graph is partitioned into clusters, where one peer within each cluster can
communicate with other peers outside of the cluster. These super-peers are dynamically elected within each
group, and should have additional resources to facilitate the increased communication demand.

The restricted communication reduces unneeded calls to neighbors and prevents the huge amount of broadcast
traffic found in the completely unstructured P2P system. The downside is that there is a lot of traffic going
through super-peer, even though super-peer does nothing at all.

In the past, Skype was a good example of how SuperPeers work. There is more information about how
Skype used to work in the book on page 88-90.

