Today

 Architectures for distributed systems (Chapter 2)

— Centralized, decentralized, hybrid
— Middleware
— Self-managing systems

Computer Science CS677: Distributed OS Lecture 2, page |

Architectural Styles

 Important styles of architecture for
distributed systems
— Layered architectures
— Object-based architectures
— Data-centered architectures
— Event-based architectures
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Layered Design
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* Each layer uses previous layer to implement new functionality
that 1s exported to the layer above

Example: Multi-tier web apps

0 § Computer Science CS677: Distributed OS Lecture 2, page 3

Object-based Style

Object Object

Method call

A

* Each object corresponds to a components

« Components interact via remote procedure calls
— Popular in client-server systems
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Event-based architecture
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« Communicate via a common repository
— Use a publish-subscribe paradigm
— Consumers subscribe to types of events
— Events are delivered once published by any publisher
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Shared data-space

Component Component

Data delivery Publish

Shared (persistent) data space

(b)

« “Bulletin-board” architecture
— Decoupled in space and time
— Post items to shared space; consumers pick up at a later time
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Resource-based Architecture

« Representational State Transfer (REST)
— Basis for RESTful web services
— Resources identified through a single naming scheme
— All services offer same interface (e.g., 4 HTTP operations)
— Messages are fully described
— No state of the caller is kept (stateless execution)
— Example: use HTTP for API
* http://bucketname.s3.aws.com/objName
» Get / Put / Delete / Post HTTP operations
— Return JSON objects

{"name" :"test.com”, "messages":["msg 1","msg 2","msg 3"],"age":100)}
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Client-Server Architectures

_ Wait for result
ClioN m—

Request Reply

Provide service Time —>

* Most common style: client-server architecture
* Application layering
* User-interface level

 Processing level
 Data level
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Search Engine Example

: User-interface
User interface level
HTML page
Keyword expression containing list
HTML
generator Processing
Query % Ranked list level
generator of page titles

Ranking

Database queries algorithm

Web page titles
with meta-information
Data level

Database
with Web pages

» Search engine architecture with 3 layers
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Multitiered Architectures

* The simplest organization is to have only
two types of machines:

A client machine containing only the
programs implementing (part of) the user-
interface level

A server machine containing the rest,

— the programs implementing the processing
and data level
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A Spectrum of Choices

* From browser-based to phone-based to desktop apps

Client machine
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Three-tier Web Applications

User interface Wait for result
(presentation) T\ T
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operation result
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» Server itself uses a “client-server” architecture
« 3 tiers: HTTP, J2EE and database

— Very common in most web-based applications
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Actual node

Decentralized Architectures

{0}

{147 13,1415 {01} 12

13} {3}
{8,9,10,11,12} {2,3,4}
. Associated -
113 data keys {5}
110) 56.7) 16

’-‘..?.f\:j_'_{{j:/@/
* Peer-to-peer systems

— Removes distinction between a client and a server
— Overlay network of nodes

* Chord: structured peer-to-peer system
— Use a distributed hash table to locate objects
* Data item with key & -> smallest node with id >=k
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Content Addressable Network (CAN)
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* CAN: d-dimensional coordinate system
— Partitioned among all nodes in the system
— Example: [0,1] x [0,1] space across 6 nodes
* Every data item maps to a point
+ Join: pick a random point, split with node for that point
* Leave: harder, since a merge may not give symmetric partitions
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Unstructured P2P Systems

* Topology based on randomized algorithms

— Each node pick a random set of nodes and becomes their
neighbors

* Gnutella
— Choice of degree impacts network dynamics
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SuperPeers

Regular peer

Superpeer

Superpeer
network

« Some nodes become “distinguished”

— Take on more responsibilities (need to have or be willing to
donate more resources)

— Example: Skype super-peer
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Collaborative Distributed Systems

Client node
K out of N nodes
Cﬁ_ookup(F) Node 1
A BitTorrent torrent file List of nodes \ Node 2
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Web server  server File server Tracker
Node N

 BitTorrent: Collaborative P2P downloads
— Download chunks of a file from multiple peers
» Reassemble file after downloading
— Use a global directory (web-site) and download a .torrent

* .torrent contains info about the file
— Tracker: server that maintains active nodes that have requested chunks
— Force altruism:
» If P sees Q downloads more than uploads, reduce rate of sending to Q
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Edge-Server Systems

Content provider

Enterprise network

« Edge servers: from client-server to client-proxy-server

« Content distribution networks: proxies cache web
content near the edge
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Self-Managing Systems

System 1s adaptive
— Monitors itself and takes action autonomously when needed
* Autonomic computing, self-managing systems

Self-*: self-managing, self-healing

Example: automatic capacity provisioning
— Vary capacity of a web server based on demand

Monitor Compute current . )
workload m) | ¢ oture demand | ™= Adjust allocation

1
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Feedback Control Model

Uncontrollable parameters (disturbance / noise)

Y

Initial configuration ~—  Corrections o Observed output
;K Y > Core of distributed system
K
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Adjustment Metric
measures || l estimation
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Analysis

Measured output

Adjustment triggers

« Use feedback and control theory to design a self-
managing system
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Structured and Unstructured P2P

Structured
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Random
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Links to topology-
specific other nodes

Links to randomly
chosen other nodes

Time

« Can move from one to another
— Carefully exchange and select entries from partial views
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