Today

 Architectures for distributed systems (Chapter 2)

— Centralized, decentralized, hybrid
— Middleware
— Self-managing systems

Computer Science CS677: Distributed OS Lecture 2, page |

Architectural Styles

 Important styles of architecture for
distributed systems
— Layered architectures
— Object-based architectures
— Data-centered architectures
— Event-based architectures

Computer Science CS677: Distributed OS Lecture 2, page 2

Layered Design

Layer N
A
\4
Layer N-1
Request | T Response
flow § flow
v |
Layer 2
A
\4
Layer 1

(@)

* Each layer uses previous layer to implement new functionality
that 1s exported to the layer above

Example: Multi-tier web apps

0 § Computer Science CS677: Distributed OS Lecture 2, page 3

Object-based Style

Object Object

Method call

A

* Each object corresponds to a components

« Components interact via remote procedure calls
— Popular in client-server systems

5 Computer Science CS677: Distributed OS Lecture 2, page 4

Event-based architecture

Component Component

_ A A
Event delivery

v
< Event bus >
Y

Publish

Component

(a)

« Communicate via a common repository
— Use a publish-subscribe paradigm
— Consumers subscribe to types of events
— Events are delivered once published by any publisher

0 § Computer Science CS677: Distributed OS Lecture 2, page 5

Shared data-space

Component Component

Data delivery Publish

Shared (persistent) data space

(b)

« “Bulletin-board” architecture
— Decoupled in space and time
— Post items to shared space; consumers pick up at a later time

5 Computer Science CS677: Distributed OS Lecture 2, page 6

Resource-based Architecture

« Representational State Transfer (REST)
— Basis for RESTful web services
— Resources identified through a single naming scheme
— All services offer same interface (e.g., 4 HTTP operations)
— Messages are fully described
— No state of the caller is kept (stateless execution)
— Example: use HTTP for API
* http://bucketname.s3.aws.com/objName
» Get / Put / Delete / Post HTTP operations
— Return JSON objects

{"name" :"test.com”, "messages":["msg 1","msg 2","msg 3"],"age":100)}

5 Compu‘rer Science Lecture 2, page 7

Client-Server Architectures

_ Wait for result
ClioN m—

Request Reply

Provide service Time —>

* Most common style: client-server architecture
* Application layering
* User-interface level

 Processing level
 Data level

4 ‘\?% Computer Science CS677: Distributed OS Lecture 2, page 8

Search Engine Example

: User-interface
User interface level
HTML page
Keyword expression containing list
HTML
generator Processing
Query % Ranked list level
generator of page titles

Ranking

Database queries algorithm

Web page titles
with meta-information
Data level

Database
with Web pages

» Search engine architecture with 3 layers

Computer Science CS677: Distributed OS Lecture 2, page 9

Multitiered Architectures

* The simplest organization is to have only
two types of machines:

A client machine containing only the
programs implementing (part of) the user-
interface level

A server machine containing the rest,

— the programs implementing the processing
and data level

POE My

& 2

2

W B

Ly E

&\’ &
Q

Computer Science CS677: Distributed OS Lecture 2, page 10

A Spectrum of Choices

* From browser-based to phone-based to desktop apps

Client machine

’ User inter[a_ggl | User interface| | User interface | | User interface| , User interface ‘
S ” ’ Applicatio’n_\l Application Application
———————— $““‘--——-_~____$___ ‘_,,/// Database

Yy T S B

\Us:ér interface P —--$ “““““““““ : :~—~.$ ________

Application Application \\‘A[;plication ‘ | . e

Database | Database | Database | Database F—’Database ‘

Server machine

(@) (b) (©) (d) (e)

Computer Science CS677: Distributed OS Lecture 2, page 11

Three-tier Web Applications

User interface Wait for result
(presentation) T\ T

Request

Return

operation result
Application _____________ _/\{a_if _f(_)[_d_a_tga _________________
server
Request data Return data
Database N S
server Time >

» Server itself uses a “client-server” architecture
« 3 tiers: HTTP, J2EE and database

— Very common in most web-based applications

il Computer Science CS677: Distributed OS Lecture 2, page 12

Actual node

Decentralized Architectures

{0}

{147 13,1415 {01} 12

13} {3}
{8,9,10,11,12} {2,3,4}
. Associated -
113 data keys {5}
110) 56.7) 16

’-‘..?.f\:j_'_{{j:/@/
* Peer-to-peer systems

— Removes distinction between a client and a server
— Overlay network of nodes

* Chord: structured peer-to-peer system
— Use a distributed hash table to locate objects
* Data item with key & -> smallest node with id >=k

5 Computer Science CS677: Distributed OS Lecture 2, page 13

Content Addressable Network (CAN)

Keys associated with

node at (0.6,0.7)
(0,1) | (1,1) (0.9‘0.9)
\ 0.9,09) (0.2,0.8)
[} L]
(0.2,0.8) (0.6,0.7)
L] L]
(0.6,0.7) (0.9,0.6)
Actual node ° (0.9,06) ®
r (0.2,0.45)
0.2,0.3) (0.7,0.2)
(0.7,0.2) (0.2,0.15) L]
o
(0,0) (1,00
(a) (b)

* CAN: d-dimensional coordinate system
— Partitioned among all nodes in the system
— Example: [0,1] x [0,1] space across 6 nodes
* Every data item maps to a point
+ Join: pick a random point, split with node for that point
* Leave: harder, since a merge may not give symmetric partitions

Computer Science CS677: Distributed OS Lecture 2, page 14

Unstructured P2P Systems

* Topology based on randomized algorithms

— Each node pick a random set of nodes and becomes their
neighbors

* Gnutella
— Choice of degree impacts network dynamics

% A . o
2 ‘\%Compu‘rer Science CS677: Distributed OS Lecture 2, page 15

SuperPeers

Regular peer

Superpeer

Superpeer
network

« Some nodes become “distinguished”

— Take on more responsibilities (need to have or be willing to
donate more resources)

— Example: Skype super-peer

. Computer Science CS677: Distributed OS Lecture 2, page 16

Collaborative Distributed Systems

Client node
K out of N nodes
Cﬁ_ookup(F) Node 1
A BitTorrent torrent file List of nodes \ Node 2
Web page Ref. to for F Ref. to storing F }
file tracker
Web server server File server Tracker
Node N

 BitTorrent: Collaborative P2P downloads
— Download chunks of a file from multiple peers
» Reassemble file after downloading
— Use a global directory (web-site) and download a .torrent

* .torrent contains info about the file
— Tracker: server that maintains active nodes that have requested chunks
— Force altruism:
» If P sees Q downloads more than uploads, reduce rate of sending to Q

Computer Science CS677: Distributed OS Lecture 2, page 17

Edge-Server Systems

Content provider

Enterprise network

« Edge servers: from client-server to client-proxy-server

« Content distribution networks: proxies cache web
content near the edge

Computer Science CS677: Distributed OS Lecture 2, page 18

Self-Managing Systems

System 1s adaptive
— Monitors itself and takes action autonomously when needed
* Autonomic computing, self-managing systems

Self-*: self-managing, self-healing

Example: automatic capacity provisioning
— Vary capacity of a web server based on demand

Monitor Compute current .)
workload m) | ¢ oture demand | ™= Adjust allocation

1

0 § Computer Science CS677: Distributed OS Lecture 2, page 19

Feedback Control Model

Uncontrollable parameters (disturbance / noise)

Y

Initial configuration ~— Corrections o Observed output
;K Y > Core of distributed system
K
+/- +-
+-
= Reference input 5
Adjustment Metric
measures || l estimation
A

A

Analysis

Measured output

Adjustment triggers

« Use feedback and control theory to design a self-
managing system

5 Computer Science CS677: Distributed OS Lecture 2, page 20

Structured and Unstructured P2P

Structured
overlay

Random
overlay

Protocol for
specific
overlay

/4

Qt

A
Random peer

Protocol for
randomized
view

Links to topology-
specific other nodes

Links to randomly
chosen other nodes

Time

« Can move from one to another
— Carefully exchange and select entries from partial views

Computer Science

CS677: Distributed OS Lecture 2, page 21

