
CMPSCI 677 Distributed and Operating Systems Spring 2018

Lecture 1: January 22
Lecturer: Prashant Shenoy Scribe: Bin Wang

1.1 Introduction to the course

The lecture started by outlining the administrative stuff about the course syllabus, staff, textbook, topics,
and schedule. The instructor recommended ”Distributed Systems, 3rd ed” by Tannenbaum and Van Steen
as the textbook. However, some older material from the 2nd version of this book will also be used, so it’s
recommended to get them both.

The instructor also introduced the grading scheme, course mailing list, and other resources. It’s worth
noting that programming assignments (in Python, can be done in groups) and exams (1 mid-term and 1
final exam) contribute heavily towards the final grade. This course assumes undergraduate background in
operating systems. No laptop/device use is allowed during the class.

The academic part of the lecture is summarized in the upcoming sections.

1.2 Why should we learn about distributed systems?

Distributed systems are very common today. Most of the online applications that we use on a daily basis are
distributed in some shape or form. The examples include World Wide Web (WWW), Google, Amazon, P2P
file sharing systems, volunteer computing, grid and cluster computing, cloud computing, etc. Therefore, it’s
useful to understand how these real-world systems work. This course will also cover the basic principles that
underlie the design of these distributed systems.

1.3 What is a distributed system? What are the advantages &
disadvantages?

Definition: A distributed system is a system which consists of multiple connected processors working
together (usually on a collection of independent computers) and appears to its users as a single coherent
system. The examples include parallel machines and networked machines.

Distributed systems have the following advantages: 1) Distributed systems enable communication over the
network and resource sharing across machines (e.g. a process on one machine can access files stored on
a different machine). 2) Distributed systems lead to better economics in terms of price and performance.
It’s usually more cost effective to buy multiple inexpensive small machines and share the resources across
those machines than buying a single large machine. 3) Reliability. Distributed systems have better reliability
compared to centralized systems: when one machine in a distributed system fails, there are other machines to
take over its task and the whole system can still function. It’s also possible to achieve better reliability with
a distributed system by replicating data on multiple machines. 4) Scalability. As the number of machines
in a distributed system increases, all of the resources on those machines can be utilized which leads to

1-1



1-2 Lecture 1: January 22

performance scaling up. However, it’s usually hard to achieve linear scalability due to various bottlenecks
(more in section 1.5). 5) Potential for incremental growth. If an application becomes more popular, more
machines can be added to its cluster to grow its capacity on demand. This is an important reason why the
cloud computing paradigm is so popular today.

Distributed systems also have several disadvantages: 1) Distributed applications are more complex in na-
ture than centralized applications. They also require distribution aware programming languages (PLs) and
operating systems (OSs) which are also more complex to design and implement. 2) Network connectivity
becomes essential. If the connection between components breaks a distributed system may stop working.
3) Security and privacy. In a distributed system, the components and data are available over the network
to legitimate users as well as malicious users trying to get access. This characteristic makes security and
privacy more serious problems in distributed systems.

1.4 Transparency in Distributed Systems

A general design principle is that if an aspect of the system can be made transparent its users, then it
should be because that would make the system more usable. For example, when a user searches with Google
they would only interact with the search box and the result web page. The fact that the search is actually
processed on hundreds of thousands machines is hidden from the user (replication transparency). If one of
the underlying server fails, instead of reporting the failure to the user or never returning a result, Google
will automatically handle the failure by retransmitting the task to a back-up server (failure transparency).
However, although incorporating all the transparency features reduces complexity for users, it would also
adds complexity for the system.

Question: Are there scenarios where you actually ought to reveal some of these features rather than making
it transparent?

Answer: There are many systems where you may not want to make something transparent. An example is
that if you want to ssh to a specific machine in a cluster, the fact that there is a cluster of machines is not
hidden from the user because you want the user to be able to log into a specific machine. So there are many
scenarios where having more than one servers doesn’t mean you want to hide all the details. The system
designer needs to decide what to hide and what to show in order to let the user accomplish their work.

Question: What does a resource mean?

The term resource is used broadly. It could mean a machine, a file, a URL, or any other object you are
accessing in the system.

1.5 Open Distributed Systems

Open distributed systems are a class of distributed systems that offer services with their APIs openly available
and published. For example, Google Maps has a set of published APIs. You can write your own client that
talks with the Google Maps server through those APIs. This is usually a good design choice because it
enables other developers to use the system in interesting ways that even the system designer could not
anticipate. This will bring many benefits including interoperability, portability, and extensibility.



Lecture 1: January 22 1-3

1.6 Scalability Problems and Techniques

It’s often hard to distribute everything you have in the system. There are three common types of bottleneck
that prevent the system from scaling up: centralized services, centralized data, and centralized algorithms.
Centralized services simply mean that the whole application is centralized, i.e. the application runs on a
single server. In this case the processing capacity of the server will become a bottleneck. The solution is
to replicate the service on multiple machines but it will also make the system design more complicated.
Centralized data mean the code may be distributed but the data are stored in one centralized place (e.g.
one file or one database). In this case access to the data will become a bottleneck. Caching frequently used
data or replicating data at multiple locations may solve the bottleneck but new problems will emerge such
as data consistency. Centralized algorithms mean that the algorithms used in the code make centralized
assumptions (e.g. doing routing based on complete information). Generally speaking replication improves
scalability but what aspects to replicate depends on the characteristics of the application.

The following are four general principles for designing good distributed systems: 1) No machine should have
complete state information. 2) Algorithms should make decision based on local information instead of global
information. For example, if you have a load balancer than forwards requests to the least loaded server,
querying the load on every server every time a request comes will introduce a lot of overhead. A better
design in this situation may be using only local information or using randomized algorithms. 3) Failure of
any one component should not bring down the entire system. 4) No assumptions should be made about a
perfectly synchronized global clock. A global clock is useful in many situations (e.g. in a incremental build
system) but you should not assume it’s perfectly synchronized across all machines.

There are some other techniques to improve scalability such as asynchronous communication, distribution,
caching, and replication.

Question: If you make decisions based on local information does that mean you may end up using incon-
sistent data?

Answer: No. The first interpretation of this concept is that everything the decision needs is available
locally. When I make a decision I don’t need to query some other machines to get the needed information.
The second interpretation is that I don’t need global knowledge in order to make a local decision.

1.7 Distributed Systems Models

Minicomputer model : In this model each user has their local machine. The machines are interconnected
but the connection may be transient (e.g. dialing over a telephone network). All the processing is done
locally but you can fetch remote data like files or databases.

Workstation model : In this model you have local area networks (LAN) that provides connection nearly
all the time. An example of this model is the Sprite operating system: you can submit a job to your
local workstation, if your workstation is busy, Sprite will automatically transmit the job to another
idle workstation to execute the job and return the results. This is an early example of resource sharing
where processing power on idle machines are shared.

Client-server model : This model evolved from the workstation model. In this model there are powerful
workstations who serve as dedicated servers while the clients are less powerful and rely on the servers
to do their jobs.

Processor pool model : In this model the clients become even less powerful (thin clients). The server is
a pool of interconnected processors. The thin clients basically rely on the server by sending almost all
their tasks to the server.



1-4 Lecture 1: January 22

Cluster computing systems / Data centers : In this model the server is a cluster of servers connected
over high-speed LAN.

Grid computing systems : This model is similar to cluster computing systems except for that the server
are now distributed in location and are connected over wide area network (WAN) instead of LAN.

WAN-based clusters / distributed data centers Similar to grid computing systems but now it’s clus-
ters/data centers rather than individual servers that are interconnected over WAN.

Cloud computing : Infrastructures are managed by cloud providers. Users only lease resources on demand
and are billed on a pay-as-you-go model.

Emerging Models: Distributed Pervasive Systems: The nodes in this model are no longer traditional
computers but smaller nodes with microcontroller and networking capabilities. They are very resource
constrained and present their own design challenges. For example, today’s car can be viewed as a distributed
system as it consists of many sensors and they communicate over LAN. Other examples include home
networks, mobile computing, personal area networks, etc.

1.8 Uniprocessor Operating Systems

Generally speaking the roles of operating systems are (1) resource management (CPU, memory, I/O devices)
and (2) to provide a virtual interface that is easier to use than hardware to end users and other applications.

Uniprocessor operating systems are operating systems that manage computers with only one processor/core.
The structure of uniprocessor operating systems include 1) Monolithic model that uses a one large kernel
to handle everything. The examples of this model include MS-DOS and early UNIX. 2) Layered design.
In this model the functionality is decomposed into N layers. Each layer can only interact with with layer
that is directly above/below it. Today this model is only used in the network sub-system. 3) Microkernel
architecture. In this model the kernel is very small and only provides very basic services: inter-process
communication and security. All other additional functionalities are implemented as standard processes in
user-space.

Question: Why is the microkernel architecture a good idea?

Answer: The microkernel architecture provides two advantages: 1) Modularity. It’s easier to add new
functionalities or modify existing functionalities. 2) Security. Vulnerabilities in one module will not affect
other modules. However, this architecture also has a major disadvantage: the performance may be not
so good because of the overhead incurred by inter-process communication is much higher than function
calls within a process. Therefore, most modern operating systems at one time employed the microkernel
architecture but eventually have to move from it due to performance issues. Nowadays most operating
systems use a hybrid architecture: some functionalities are independent processes while other functionalities
are moved back to kernel for better performance.

1.9 Distributed Operating Systems

Distributed operating systems are operating systems that manage resources in a distributed system. However,
from a user perspective a distributed OS will look no different from a centralized OS because all the details
about distribution are automatically handled by the OS and are transparent to the user.



Lecture 1: January 22 1-5

There are essentially three flavors of distributed OSs: distributed operating system (DOS), networked op-
erating system (NOS), and middleware. DOS provides the highest level of transparency and the tightest
form of integration. In a distributed system managed by DOS, everything operates above the DOS kernel
will see the system as a single logical machine. NOS provides very little transparency and the least form
of integration. It’s basically standard operating system kernel augmented with networking functionality so
that communication with other machines is enabled. Besides that nothing more is hidden by the OS. Most
modern operating systems are networked operating systems. Middleware are somewhere in between: the
transparency is provided to only some applications while other applications still just use the regular OS
networking capability.

1.10 Multiprocessor Operating systems

Multiprocessor operating systems are just like uniprocessor operating systems except for that they manage
multiple CPUs/cores transparently to the user. Each processor has its own hardware cache so maintaining
consistency between those caches becomes a challenge. Today most operating systems are multiprocessor
operating systems because even mobile phone has multiple cores.


