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Distributed Middleware
• Distributed objects 

• DCOM 
• CORBA 
• EJBs 
• Jini
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Distributed Objects

• Figure 10-1. Common organization of a remote  
object with client-side proxy.
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Distributed Objects vs. RPC
RPC : Remote Procedure Call 

– Provides argument marshalling / unmarshalling 
– Server handles invocation 

Distributed Objects 
– Remote methods on remote objects 
– RPC + distributed object references 

Distributed object operation: 
– Server side: create object, register it   (register with what?) (always in this 

order?) 
– Client side: get object reference (from where?), invoke method
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Distributed Objects through History
DCOMONC RPC

DCE RPC CORBA

Java RMI

EJB

A brief and incomplete history of 
commercially used RPC and 
distributed object systems

The vision

a Grand Distributed System

The reality

Client/Server

4



Computer Science Lecture 23, page CS677: Distributed OS

Naming: Object References

• Interoperable object reference: language-independent techniques 
for referring to objects

CORBA object reference
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Example: Enterprise Java Beans

• Figure 10-2. General 
architecture of an 
EJB server.
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Parts of an EJB
• Home interface: 

– Object creation, deletion 
– Location of persistent objects (entity beans) 
– Object identifier is class-managed 

• Remote interface 
– “business logic” 
– i.e. the object itself 

• Terminology differences 
– Client/server -> web applications
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Four Types of EJBs
• Stateless session beans 
• Stateful session beans 
• Entity beans 
• Message-driven beans
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CORBA Overview

• Object request broker (ORB) 
– Core of the middleware platform 
– Handles communication between objects and clients 
– Handles distribution and heterogeneity issues  
– May be implemented as libraries 

• Facilities: composition of CORBA services 

9



Computer Science Lecture 23, page CS677: Distributed OS

Corba Services
Service Description

Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication through events

Notification Advanced facilities for event-based asynchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services on object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins
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Object Model

• Objects & services specified using an Interface Definition language (IDL) 
– Used to specify interface of objects and/or services 

• ORB: run-time system that handles object-client communication 
• Dynamic invocation interface: allows object invocation at run-time 

– Generic invoke operation: takes object reference as input 
– Interface repository stores all interface definitions
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Object Invocation Models

• Invocation models supported in CORBA. 
– Original model was RMI/RPC-like 
– Current CORBA versions support additional semantics

Request type Failure semantics Description

Synchronous At-most-once Caller blocks until a response is returned 
or an exception is raised

One-way Best effort delivery Caller continues immediately without 
waiting for any response from the server

Deferred 
synchronous

At-most-once Caller continues immediately and can 
later block until response is delivered
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Event and Notification Services (1)

• The logical organization of suppliers and consumers of events, 
following the push-style model.   (PUB-SUB model)
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Event and Notification Services (2)

• The pull-style model for event delivery in CORBA.
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Messaging: Async. Method Invocation

• CORBA's callback model for asynchronous method invocation.
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Messaging (2)

• CORBA'S polling model for asynchronous method invocation.
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DCOM
• Distributed Component Object Model 

– Microsoft’s  object model (middleware) 
– Now evolved into .NET
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DCOM: History
• Successor to COM 

– Developed to support compound documents 
• Word document with excel spreadsheets and images 

• Object linking and embedding (OLE) 
– Initial version: message passing to pass information between parts 
– Soon replaced by a more flexible layer: COM 

• ActiveX: OLE plus new features 
– No good consensus on what exactly does ActiveX contain 
– Loosely: groups capabilities within applications to support scripting, grouping 

of objects. 
• DCOM: all of the above, but across machines
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Type Library and Registry
• The overall architecture of DCOM. 

– Type library == CORBA interface repository 
– Service control manager == CORBA implementation repository
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Monikers: Persistent Objects

• By default, DCOM objects are transient 
• Persistent objects implemented using monikers (reference stored on disk) 

– Has all information to recreate the object at a later time

Step Performer Description

1 Client Calls BindMoniker at moniker

2 Moniker Looks up associated CLSID and instructs SCM to 
create object

3 SCM Loads class object

4 Class object Creates object and returns interface pointer to 
moniker

5 Moniker Instructs object to load previously stored state

6 Object Loads its state from file

7 Moniker Returns interface pointer of object to client
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Monikers (2)

• DCOM-defined moniker types.

Moniker type Description

File moniker Reference to an object constructed from a file

URL moniker Reference to an object constructed from a URL

Class moniker Reference to a class object

Composite moniker Reference to a composition of monikers

Item moniker Reference to a moniker in a composition

Pointer moniker Reference to an object in a remote process
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Distributed Coordination

• Motivation 
– Next generation of systems will be inherently distributed 

– Main problem: techniques to coordinate various components 
• Emphasis on coordination of activities between components

22



Computer Science Lecture 23, page CS677: Distributed OS

Introduction to Coordination Models
• Key idea: separation of computation from coordination 
• A taxonomy of coordination models  

– Direct coordination 
– Mailbox coordination 
– Meeting-oriented coordination (publish/subscribe) 
– Generative (shared tuple space)
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Jini Case Study
• Coordination system based on Java 

– Clients can discover new services as they become available 
– Example: “intelligent toaster” 
– Distributed event and notification system 

• Coordination model 
– Bulletin board model 
– Uses JavaSpaces: a shared dataspace that stores tuples 

• Each tuple points to a Java object
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Overall Approach

•  The principle of exchanging data items between publishers and 
subscribers.
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Overview of Jini

• The general organization of a JavaSpace in Jini.
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Communication Events

• Using events in combination with a JavaSpace
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Processes (1)

• A JavaSpace can be replicated on all machines.  The dotted lines show the 
partitioning of the JavaSpace into subspaces. 

a) Tuples are broadcast on WRITE 
b) READs are local, but the removing of an instance when calling TAKE must 

be broadcast
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Processes (2)

• Unreplicated JavaSpace. 
a) A WRITE is done locally. 
b) A READ or TAKE requires the template tuple to be broadcast in 

order to find a tuple instance
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