
Computer Science Lecture 22, page CS677: Distributed OS

Today: World Wide Web

• WWW principles

• Case Study: web caching as an illustrative example
– Invalidate versus updates
– Push versus Pull
– Cooperation between replicas

1

Computer Science Lecture 22, page CS677: Distributed OS

Traditional Web-Based Systems

• The overall organization of a  
traditional Web site.

2

Computer Science Lecture 22, page CS677: Distributed OS

Processes – Clients

• The logical components of a Web browser.
3

Computer Science Lecture 22, page CS677: Distributed OS

Processes – Clients

• Using a Web proxy when the browser does not speak FTP (or for
caching)

4

Computer Science Lecture 22, page CS677: Distributed OS

The Apache Web Server

• The general organization of the Apache Web server.

5

Computer Science Lecture 22, page CS677: Distributed OS

Multitiered Architectures

• The principle of using server-side CGI programs.

6

Computer Science Lecture 22, page CS677: Distributed OS

Web Server Clusters

• The principle of using a server cluster in combination with a front
end to implement a Web service.

7

Computer Science Lecture 22, page CS677: Distributed OS

Web Server Clusters (2)

• A scalable content-aware cluster of Web servers.

8

Computer Science Lecture 22, page CS677: Distributed OS

Web Documents

• Six top-level MIME types and some common subtypes.
9

Computer Science Lecture 22, page CS677: Distributed OS

HTTP Connections

• Using nonpersistent connections.

10

Computer Science Lecture 22, page CS677: Distributed OS

HTTP Connections

• (b) Using persistent connections.

11

Computer Science Lecture 22, page CS677: Distributed OS

HTTP Methods

• Operations supported by HTTP.

12

Computer Science Lecture 22, page CS677: Distributed OS

Web Services Fundamentals

• The principle of a Web service.
13

Computer Science Lecture 22, page CS677: Distributed OS

Simple Object Access Protocol

• An example of an XML-based SOAP message.

14

Computer Science Lecture 22, page

RESTful Web Services

• SOAP heavy-weight protocol for web-based
distributed computing
– RESTful web service: lightweight , point-to-point XML

comm
• REST=representative state transfer

– HTTP GET => read
– HTTP POST => create, update, delete
– HTTP PUT => create, update
– HTTP DELETE => delete

• Simpler than RPC-sytle SOAP
– closer to the web

15

Computer Science Lecture 22, page

RESTful Example

GET /StockPrice/IBM HTTP/1.1
Host: example.org
Accept: text/xml
Accept-Charset: utf-8

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<s:Quote xmlns:s="http://example.org/stock-service">
 <s:TickerSymbol>IBM</s:TickerSymbol>
 <s:StockPrice>45.25</s:StockPrice>
</s:Quote>

16

Computer Science Lecture 22, page

Corresponding SOAP Call
GET /StockPrice HTTP/1.1
Host: example.org
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:s="http://www.example.org/stock-service">
 <env:Body>
 <s:GetStockQuote>
 <s:TickerSymbol>IBM</s:TickerSymbol>
 </s:GetStockQuote>
 </env:Body>
</env:Envelope>

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope"
 xmlns:s="http://www.example.org/stock-service">
 <env:Body>
 <s:GetStockQuoteResponse>
 <s:StockPrice>45.25</s:StockPrice>
 </s:GetStockQuoteResponse>
 </env:Body>
</env:Envelope>

17

Computer Science Lecture 22, page

SOAP vs RESTful WS

• Language, platform and
transport agnostic

• Supports general
distributed computing

• Standards based (WSDL,
UDDI dir. service...)

• Builtin error handling
• Extensible
• More heavy-weight
• Harder to develop

• Language and platform
agnostic

• Point-to-point only; no
intermediaries

• Lack of standards support
for security, reliability (“roll
you own”

• Simpler, less learning curve,
less reliance on tools

• Tied to HTTP transport layer
• More concise

18

Computer Science Lecture 22, page CS677: Distributed OS

Web Proxy Caching

• The principle of cooperative caching.

19

Computer Science Lecture 22, page CS677: Distributed OS

Web Caching

• Example of the web to illustrate caching and replication issues
– Simpler model: clients are read-only, only server updates data

browser Web Proxy
cache

request

response

request

response

Web
server

browser Web
server

request

response

20

Computer Science Lecture 22, page CS677: Distributed OS

Consistency Issues

• Web pages tend to be updated over time
– Some objects are static, others are dynamic
– Different update frequencies (few minutes to few weeks)

• How can a proxy cache maintain consistency of cached
data?
– Send invalidate or update
– Push versus pull

21

Computer Science Lecture 22, page CS677: Distributed OS

Push-based Approach

• Server tracks all proxies that have requested objects
• If a web page is modified, notify each proxy
• Notification types

– Indicate object has changed [invalidate]
– Send new version of object [update]

• How to decide between invalidate and updates?
– Pros and cons?
– One approach: send updates for more frequent objects,

invalidate for rest

proxy Web
server

push

22

Computer Science Lecture 22, page CS677: Distributed OS

Push-based Approaches

• Advantages
– Provide tight consistency [minimal stale data]
– Proxies can be passive

• Disadvantages
– Need to maintain state at the server

• Recall that HTTP is stateless
• Need mechanisms beyond HTTP

– State may need to be maintained indefinitely
• Not resilient to server crashes

23

Computer Science Lecture 22, page CS677: Distributed OS

Pull-based Approaches

• Proxy is entirely responsible for maintaining consistency
• Proxy periodically polls the server to see if object has

changed
– Use if-modified-since HTTP messages

• Key question: when should a proxy poll?
– Server-assigned Time-to-Live (TTL) values

• No guarantee if the object will change in the interim

proxy Web
server

poll

response

24

Computer Science Lecture 22, page CS677: Distributed OS

Pull-based Approach: Intelligent Polling

• Proxy can dynamically determine the refresh interval
– Compute based on past observations

• Start with a conservative refresh interval
• Increase interval if object has not changed between two

successive polls
• Decrease interval if object is updated between two polls
• Adaptive: No prior knowledge of object characteristics

needed

25

Computer Science Lecture 22, page CS677: Distributed OS

Pull-based Approach

• Advantages
– Implementation using HTTP (If-modified-Since)
– Server remains stateless
– Resilient to both server and proxy failures

• Disadvantages
– Weaker consistency guarantees (objects can change between

two polls and proxy will contain stale data until next poll)
• Strong consistency only if poll before every HTTP response

– More sophisticated proxies required
– High message overhead

26

Computer Science Lecture 22, page CS677: Distributed OS

A Hybrid Approach: Leases
• Lease: duration of time for which server agrees to notify proxy of

modification
• Issue lease on first request, send notification until expiry

– Need to renew lease upon expiry
• Smooth tradeoff between state and messages exchanged

– Zero duration => polling, Infinite leases => server-push
• Efficiency depends on the lease duration

Client Proxy Server

Get + lease req

Reply + lease
read

Invalidate/update

27

Computer Science Lecture 22, page CS677: Distributed OS

Policies for Leases Duration

• Age-based lease
– Based on bi-modal nature of object lifetimes
– Larger the expected lifetime longer the lease

• Renewal-frequency based
– Based on skewed popularity
– Proxy at which objects is popular gets longer lease

• Server load based
– Based on adaptively controlling the state space
– Shorter leases during heavy load

28

Computer Science Lecture 22, page CS677: Distributed OS

Cooperative Caching

• Caching infrastructure can have multiple web proxies
– Proxies can be arranged in a hierarchy or other structures

• Overlay network of proxies: content distribution network
– Proxies can cooperate with one another

• Answer client requests
• Propagate server notifications

29

Computer Science Lecture 22, page CS677: Distributed OS

 Hierarchical Proxy Caching

Examples: Squid, Harvest

Server

Parent

HTTP

HTTP Read A
1

ICPICP

ICP

2

HTTP

3

Clients

Leaf Caches

30

Computer Science Lecture 22, page CS677: Distributed OS

Locating and Accessing Data

• Lookup is local
• Hit at most 2 hops
• Miss at most 2 hops (1 extra on wrong hint)

Properties

(A,X)

Node X

Server
for B

Clients

Caches
Read A

Get A

Read B

Get B
Node Y

Minimize cache hops on hit Do not slow down misses

Node Z

31

Computer Science Lecture 22, page CS677: Distributed OS

CDN Issues

• Which proxy answers a client request?
– Ideally the “closest” proxy
– Akamai uses a DNS-based approach

• Propagating notifications
– Can use multicast or application level multicast to reduce

overheads (in push-based approaches)

• Active area of research
– Numerous research papers available

32

Computer Science Lecture 22, page CS677: Distributed OS

Adjustment Measures

• The principal working of the Akamai CDN.

33

Computer Science Lecture 22, page CS677: Distributed OS

Replication of Web Applications

• Figure 12-21. Alternatives for caching and replication  
with Web applications.

34

