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Today: More Classical Problems

• Termination Detection 

• Leader election 

• Mutual exclusion
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Global State

• Global state of a distributed system 
– Local state of each process 
– Messages sent but not received (state of the queues) 

• Many applications need to know the state of the system 
– Failure recovery, distributed deadlock detection 

• Problem: how can you figure out the state of a 
distributed system? 
– Each process is independent 
– No global clock or synchronization 

• Distributed snapshot: a consistent global state
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Global State (1)

a) A consistent cut 
b) An inconsistent cut
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Distributed Snapshot Algorithm

• Assume each process communicates with another 
process using unidirectional point-to-point channels (e.g, 
TCP connections) 

• Any process can initiate the algorithm 
– Checkpoint local state  
– Send marker on every outgoing channel 

• On receiving a marker 
– Checkpoint state if first marker and send marker on outgoing 

channels, save messages on all other channels until: 
– Subsequent marker on a channel: stop saving state for that 

channel
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Distributed Snapshot

• A process finishes when 
– It receives a marker on each incoming channel and processes 

them all 
– State: local state plus state of all channels 
– Send state to initiator 

• Any process can initiate snapshot 
– Multiple snapshots may be in progress  

• Each is separate, and each is distinguished by tagging the 
marker with the initiator ID (and sequence number)
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Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state 
c) Q records all incoming message 
d) Q receives a marker for its incoming channel and finishes recording the state 

of the incoming channel

7



Computer Science Lecture 14, page CS677: Distributed OS

Termination Detection

• Detecting the end of a distributed computation 
• Notation: let sender be predecessor, receiver be successor 
• Two types of markers: Done and Continue 
• After finishing its part of the snapshot, process Q sends a Done or 

a Continue to its predecessor 
• Send a Done only when 

– All of Q’s successors send a Done 
– Q has not received any message since it check-pointed its local state and 

received a marker on all incoming channels 
– Else send a Continue 

• Computation has terminated if the initiator receives Done 
messages from everyone
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Election Algorithms

• Many distributed algorithms need one process to act as 
coordinator 
– Doesn’t matter which process does the job, just need to pick one 

• Election algorithms: technique to pick a unique 
coordinator (aka leader election) 

• Examples: take over the role of a failed process, pick a 
master in Berkeley clock synchronization algorithm 

• Types of election algorithms: Bully and Ring algorithms
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Bully Algorithm

• Each process has a unique numerical ID 
• Processes know the Ids and address of every other process 
• Communication is assumed reliable 
• Key Idea: select process with highest ID 
• Process initiates election if it just recovered from failure 

or if coordinator failed 
• 3 message types: election, OK, I won 
• Several processes can initiate an election simultaneously 

– Need consistent result 
• O(n2) messages required with n processes
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Bully Algorithm Details

• Any process P can initiate an election 
• P sends Election messages to all process with higher Ids 

and awaits OK messages 
• If no OK messages, P becomes coordinator and sends I 

won messages to all process with lower Ids 
• If it receives an OK, it drops out and waits for an I won 
• If a process receives an Election msg, it returns an OK and 

starts an election 
• If a process receives a I won, it treats sender an 

coordinator
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Bully Algorithm Example

• The bully election algorithm 
• Process 4 holds an election 
• Process 5 and 6 respond, telling 4 to stop 
• Now 5 and 6 each hold an election
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Bully Algorithm Example

d) Process 6 tells 5 to stop 
e) Process 6 wins and tells everyone
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Ring-based Election

• Processes have unique Ids and arranged in a logical ring 
• Each process knows its neighbors  

– Select process with highest ID 
• Begin election if just recovered or coordinator has failed 
• Send Election to closest downstream node that is alive 

– Sequentially poll each successor until a live node is found 
• Each process tags its ID on the message 
• Initiator picks node with highest ID and sends a coordinator message 
• Multiple elections can be in progress 

– Wastes network bandwidth but does no harm 
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A Ring Algorithm

• Election algorithm using a ring.
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Comparison

• Assume n processes and one election in progress 

• Bully algorithm 
– Worst case: initiator is node with lowest ID 

• Triggers n-2 elections at higher ranked nodes: O(n2) msgs 
– Best case: immediate election: n-2 messages 

• Ring 
– 2 (n-1) messages always
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Elections in Wireless Environments (1)

• Election algorithm in a wireless network, with node a as the 
source. (a) Initial network. (b)–(e) The build-tree phase
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Elections in Wireless Environments (2)
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Elections in Large-Scale Systems

• Requirements for superpeer selection: 
1.Normal nodes should have low-latency access to 

superpeers. 
2.Superpeers should be evenly distributed across 

the overlay network. 
3.There should be a predefined portion of 

superpeers relative to the total number of nodes in 
the overlay network. 

4.Each superpeer should not need to serve more 
than a fixed number of normal nodes.
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Elections in Large-Scale Systems (2)

• Moving tokens in a two-dimensional  space using repulsion forces.
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Distributed Synchronization

• Distributed system with multiple processes may need to 
share data or access shared data structures 
– Use critical sections with mutual exclusion 

• Single process with multiple threads 
– Semaphores, locks, monitors 

• How do you do this for multiple processes in a 
distributed system? 
– Processes may be running on different machines 

• Solution: lock mechanism for a distributed environment 
– Can be centralized or distributed
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Centralized Mutual Exclusion

• Assume processes are numbered 
• One process is elected coordinator (highest ID process) 
• Every process needs to check with coordinator before 

entering the critical section 
• To obtain exclusive access: send request, await reply 
• To release: send release message 
• Coordinator: 

– Receive request: if available and queue empty, send grant; if 
not, queue request 

– Receive release: remove next request from queue and send 
grant
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Mutual Exclusion:  
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region.  Permission is 
granted 

b) Process 2 then asks permission to enter the same critical region.  The coordinator does 
not reply. 

c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2
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Properties

• Simulates centralized lock using blocking calls 
• Fair: requests are granted the lock in the order they were received 
• Simple: three messages per use of a critical section (request, grant, release) 
• Shortcomings: 

– Single point of failure 
– How do you detect a dead coordinator? 

• A process can not distinguish between “lock in use” from a dead coordinator 
– No response from coordinator in either case 

– Performance bottleneck in large distributed systems
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Decentralized Algorithm

• Use voting  
• Assume n replicas and a coordinator per replica 
• To acquire lock, need majority vote  m > n/2 

coordinators 
– Non blocking: coordinators returns OK or “no” 

• Coordinator crash => forgets previous votes 
– Probability that k coordinators crash P(k) = mCk pk (1-p)m-k 

– Atleast 2m-n need to reset to violate correctness 
• ∑ 2m-n 

nP(k)
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Distributed Algorithm

• [Ricart and Agrawala]: needs 2(n-1) messages 
• Based on event ordering and time stamps 

– Assumes total ordering of events in the system (Lamport’s clock) 
• Process k enters critical section as follows 

–  Generate new time stamp TSk = TSk+1 
– Send request(k,TSk) all other n-1 processes 
– Wait until reply(j)  received from all other processes 
– Enter critical section 

• Upon receiving a request message, process j 
– Sends reply if no contention 
– If already in critical section, does not reply, queue request 
– If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else 

queue
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A Distributed Algorithm

a) Two processes want to enter the same critical region at the same 
moment. 

b) Process 0 has the lowest timestamp, so it wins. 
c) When process 0 is done, it sends an OK also, so 2 can now enter the 

critical region.
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Properties

• Fully decentralized 

• N points of failure! 

• All processes are involved in all decisions 
– Any overloaded process can become a bottleneck

28



Computer Science Lecture 14, page CS677: Distributed OS

A Token Ring Algorithm

a) An unordered group of processes on a network.   
b) A logical ring constructed in software.

• Use a token to arbitrate access to critical section 
• Must wait for token before entering CS 
• Pass the token to neighbor once done or if not interested 
• Detecting token loss in non-trivial
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Comparison

• A comparison of four mutual exclusion algorithms.

Algorithm Messages per 
entry/exit

Delay before entry (in 
message times) Problems

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2 ( n – 1 ) 2 ( n – 1 ) Crash of any 
process

Token ring 1 to ∞ 0 to n – 1 Lost token, process 
crash
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