
Computer Science Lecture 14, page CS677: Distributed OS

Today: More Classical Problems

• Termination Detection

• Leader election

• Mutual exclusion

1

Computer Science Lecture 14, page CS677: Distributed OS

Global State

• Global state of a distributed system
– Local state of each process
– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system
– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a
distributed system?
– Each process is independent
– No global clock or synchronization

• Distributed snapshot: a consistent global state

2

Computer Science Lecture 14, page CS677: Distributed OS

Global State (1)

a) A consistent cut
b) An inconsistent cut

3

Computer Science Lecture 14, page CS677: Distributed OS

Distributed Snapshot Algorithm

• Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

• On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
– Subsequent marker on a channel: stop saving state for that

channel

4

Computer Science Lecture 14, page CS677: Distributed OS

Distributed Snapshot

• A process finishes when
– It receives a marker on each incoming channel and processes

them all
– State: local state plus state of all channels
– Send state to initiator

• Any process can initiate snapshot
– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

5

Computer Science Lecture 14, page CS677: Distributed OS

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot

6

Computer Science Lecture 14, page CS677: Distributed OS

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the state

of the incoming channel

7

Computer Science Lecture 14, page CS677: Distributed OS

Termination Detection

• Detecting the end of a distributed computation
• Notation: let sender be predecessor, receiver be successor
• Two types of markers: Done and Continue
• After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
• Send a Done only when

– All of Q’s successors send a Done
– Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone

8

Computer Science Lecture 14, page CS677: Distributed OS

Election Algorithms

• Many distributed algorithms need one process to act as
coordinator
– Doesn’t matter which process does the job, just need to pick one

• Election algorithms: technique to pick a unique
coordinator (aka leader election)

• Examples: take over the role of a failed process, pick a
master in Berkeley clock synchronization algorithm

• Types of election algorithms: Bully and Ring algorithms

9

Computer Science Lecture 14, page CS677: Distributed OS

Bully Algorithm

• Each process has a unique numerical ID
• Processes know the Ids and address of every other process
• Communication is assumed reliable
• Key Idea: select process with highest ID
• Process initiates election if it just recovered from failure

or if coordinator failed
• 3 message types: election, OK, I won
• Several processes can initiate an election simultaneously

– Need consistent result
• O(n2) messages required with n processes

10

Computer Science Lecture 14, page CS677: Distributed OS

Bully Algorithm Details

• Any process P can initiate an election
• P sends Election messages to all process with higher Ids

and awaits OK messages
• If no OK messages, P becomes coordinator and sends I

won messages to all process with lower Ids
• If it receives an OK, it drops out and waits for an I won
• If a process receives an Election msg, it returns an OK and

starts an election
• If a process receives a I won, it treats sender an

coordinator

11

Computer Science Lecture 14, page CS677: Distributed OS

Bully Algorithm Example

• The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

12

Computer Science Lecture 14, page CS677: Distributed OS

Bully Algorithm Example

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

13

Computer Science Lecture 14, page CS677: Distributed OS

Ring-based Election

• Processes have unique Ids and arranged in a logical ring
• Each process knows its neighbors

– Select process with highest ID
• Begin election if just recovered or coordinator has failed
• Send Election to closest downstream node that is alive

– Sequentially poll each successor until a live node is found
• Each process tags its ID on the message
• Initiator picks node with highest ID and sends a coordinator message
• Multiple elections can be in progress

– Wastes network bandwidth but does no harm

14

Computer Science Lecture 14, page CS677: Distributed OS

A Ring Algorithm

• Election algorithm using a ring.

15

Computer Science Lecture 14, page CS677: Distributed OS

Comparison

• Assume n processes and one election in progress

• Bully algorithm
– Worst case: initiator is node with lowest ID

• Triggers n-2 elections at higher ranked nodes: O(n2) msgs
– Best case: immediate election: n-2 messages

• Ring
– 2 (n-1) messages always

16

Computer Science Lecture 14, page CS677: Distributed OS

Elections in Wireless Environments (1)

• Election algorithm in a wireless network, with node a as the
source. (a) Initial network. (b)–(e) The build-tree phase

17

Computer Science Lecture 14, page CS677: Distributed OS

Elections in Wireless Environments (2)

18

Computer Science Lecture 14, page CS677: Distributed OS

Elections in Large-Scale Systems

• Requirements for superpeer selection:
1.Normal nodes should have low-latency access to

superpeers.
2.Superpeers should be evenly distributed across

the overlay network.
3.There should be a predefined portion of

superpeers relative to the total number of nodes in
the overlay network.

4.Each superpeer should not need to serve more
than a fixed number of normal nodes.

19

Computer Science Lecture 14, page CS677: Distributed OS

Elections in Large-Scale Systems (2)

• Moving tokens in a two-dimensional space using repulsion forces.

20

Computer Science Lecture 14, page CS677: Distributed OS

Distributed Synchronization

• Distributed system with multiple processes may need to
share data or access shared data structures
– Use critical sections with mutual exclusion

• Single process with multiple threads
– Semaphores, locks, monitors

• How do you do this for multiple processes in a
distributed system?
– Processes may be running on different machines

• Solution: lock mechanism for a distributed environment
– Can be centralized or distributed

21

Computer Science Lecture 14, page CS677: Distributed OS

Centralized Mutual Exclusion

• Assume processes are numbered
• One process is elected coordinator (highest ID process)
• Every process needs to check with coordinator before

entering the critical section
• To obtain exclusive access: send request, await reply
• To release: send release message
• Coordinator:

– Receive request: if available and queue empty, send grant; if
not, queue request

– Receive release: remove next request from queue and send
grant

22

Computer Science Lecture 14, page CS677: Distributed OS

Mutual Exclusion:  
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a critical region. Permission is
granted

b) Process 2 then asks permission to enter the same critical region. The coordinator does
not reply.

c) When process 1 exits the critical region, it tells the coordinator, when then replies to 2

23

Computer Science Lecture 14, page CS677: Distributed OS

Properties

• Simulates centralized lock using blocking calls
• Fair: requests are granted the lock in the order they were received
• Simple: three messages per use of a critical section (request, grant, release)
• Shortcomings:

– Single point of failure
– How do you detect a dead coordinator?

• A process can not distinguish between “lock in use” from a dead coordinator
– No response from coordinator in either case

– Performance bottleneck in large distributed systems

24

Computer Science Lecture 14, page CS677: Distributed OS

Decentralized Algorithm

• Use voting
• Assume n replicas and a coordinator per replica
• To acquire lock, need majority vote m > n/2

coordinators
– Non blocking: coordinators returns OK or “no”

• Coordinator crash => forgets previous votes
– Probability that k coordinators crash P(k) = mCk pk (1-p)m-k

– Atleast 2m-n need to reset to violate correctness
• ∑ 2m-n

nP(k)

25

Computer Science Lecture 14, page CS677: Distributed OS

Distributed Algorithm

• [Ricart and Agrawala]: needs 2(n-1) messages
• Based on event ordering and time stamps

– Assumes total ordering of events in the system (Lamport’s clock)
• Process k enters critical section as follows

– Generate new time stamp TSk = TSk+1
– Send request(k,TSk) all other n-1 processes
– Wait until reply(j) received from all other processes
– Enter critical section

• Upon receiving a request message, process j
– Sends reply if no contention
– If already in critical section, does not reply, queue request
– If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else

queue

26

Computer Science Lecture 14, page CS677: Distributed OS

A Distributed Algorithm

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the

critical region.
27

Computer Science Lecture 14, page CS677: Distributed OS

Properties

• Fully decentralized

• N points of failure!

• All processes are involved in all decisions
– Any overloaded process can become a bottleneck

28

Computer Science Lecture 14, page CS677: Distributed OS

A Token Ring Algorithm

a) An unordered group of processes on a network.
b) A logical ring constructed in software.

• Use a token to arbitrate access to critical section
• Must wait for token before entering CS
• Pass the token to neighbor once done or if not interested
• Detecting token loss in non-trivial

29

Computer Science Lecture 14, page CS677: Distributed OS

Comparison

• A comparison of four mutual exclusion algorithms.

Algorithm Messages per
entry/exit

Delay before entry (in
message times) Problems

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2 (n – 1) 2 (n – 1) Crash of any
process

Token ring 1 to ∞ 0 to n – 1 Lost token, process
crash

30

