
Computer Science Lecture 13, page CS677: Distributed OS

Last Class: Classical Problems in
Distributed Systems

• Time ordering and clock synchronization
• GPS
• Lamport’s Clocks

1

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Today: More Classical Problems
• Vector Clocks

• Distributed Snapshots

• Termination Detection

• Leader election

• Mutual exclusion

2

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Logical Clocks
• For many problems, internal consistency of clocks is

important
– Absolute time is less important
– Use logical clocks

• Key idea:
– Clock synchronization need not be absolute
– If two machines do not interact, no need to synchronize them
– More importantly, processes need to agree on the order in

which events occur rather than the time at which they occurred

3

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Event Ordering
• Problem: define a total ordering of all events that occur

in a system
• Events in a single processor machine are totally ordered
• In a distributed system:

– No global clock, local clocks may be unsynchronized
– Can not order events on different machines using local times

• Key idea [Lamport]
– Processes exchange messages
– Message must be sent before received
– Send/receive used to order events (and synchronize clocks)

4

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Happened Before Relation

• If A and B are events in the same process and A executed before B,
then A -> B

• If A represents sending of a message and B is the receipt of this
message, then A -> B

• Relation is transitive:
– A -> B and B -> C => A -> C

• Relation is undefined across processes that do not exchange
messages
– Partial ordering on events

5

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Event Ordering Using HB
• Goal: define the notion of time of an event such that

– If A-> B then C(A) < C(B)
– If A and B are concurrent, then C(A) <, = or > C(B)

• Solution:
– Each processor maintains a logical clock LCi
– Whenever an event occurs locally at I, LCi = LCi+1
– When i sends message to j, piggyback Lci
– When j receives message from i

• If LCj < LCi then LCj = LCi +1 else do nothing
– Claim: this algorithm meets the above goals

6

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Lamport’s Logical Clocks

7

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Example: Totally-Ordered Multicasting
• Updating a replicated database and leaving it in an inconsistent

state. -
– only need to order messages (no need to compare local events)
– send every message to all nodes.

8

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Causality

• Lamport’s logical clocks
– If A -> B then C(A) < C(B)
– Reverse is not true!!

• Nothing can be said about events by comparing time-stamps!
• If C(A) < C(B), then ??

• Need to maintain causality
– If a -> b then a is casually related to b
– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
– Capture causal relationships between groups of processes
– Need a time-stamping mechanism such that:

• If T(A) < T(B) then A should have causally preceded B

9

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Vector Clocks
• Each process i maintains a vector Vi

– Vi[i] : number of events that have occurred at i
– Vi[j] : number of events I knows have occurred at process j

• Update vector clocks as follows
– Local event: increment Vi[I]
– Send a message :piggyback entire vector V
– Receipt of a message: Vj[k] = max(Vj[k],Vi[k])

• Receiver is told about how many events the sender knows
occurred at another process k

• Also Vj[i] = Vj[i]+1
• Exercise: prove that if V(A)<V(B), then A causally

precedes B and the other way around.
10

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Enforcing Causal Communication
• Figure 6-13. Enforcing causal communication.

11

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Global State
• Global state of a distributed system

– Local state of each process
– Messages sent but not received (state of the queues)

• Many applications need to know the state of the system
– Failure recovery, distributed deadlock detection

• Problem: how can you figure out the state of a
distributed system?
– Each process is independent
– No global clock or synchronization

• Distributed snapshot: a consistent global state

12

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Global State (1)

a) A consistent cut
b) An inconsistent cut

13

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Distributed Snapshot Algorithm
• Assume each process communicates with another

process using unidirectional point-to-point channels (e.g,
TCP connections)

• Any process can initiate the algorithm
– Checkpoint local state
– Send marker on every outgoing channel

• On receiving a marker
– Checkpoint state if first marker and send marker on outgoing

channels, save messages on all other channels until:
– Subsequent marker on a channel: stop saving state for that

channel

14

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Distributed Snapshot
• A process finishes when

– It receives a marker on each incoming channel and processes
them all

– State: local state plus state of all channels
– Send state to initiator

• Any process can initiate snapshot
– Multiple snapshots may be in progress

• Each is separate, and each is distinguished by tagging the
marker with the initiator ID (and sequence number)

A
C

BM

M

15

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot

16

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state
c) Q records all incoming message
d) Q receives a marker for its incoming channel and finishes recording the state

of the incoming channel

17

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Termination Detection
• Detecting the end of a distributed computation
• Notation: let sender be predecessor, receiver be successor
• Two types of markers: Done and Continue
• After finishing its part of the snapshot, process Q sends a Done or

a Continue to its predecessor
• Send a Done only when

– All of Q’s successors send a Done
– Q has not received any message since it check-pointed its local state and

received a marker on all incoming channels
– Else send a Continue

• Computation has terminated if the initiator receives Done
messages from everyone

18

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Election Algorithms
• Many distributed algorithms need one process to act as

coordinator
– Doesn’t matter which process does the job, just need to pick

one
• Election algorithms: technique to pick a unique

coordinator (aka leader election)
• Examples: take over the role of a failed process, pick a

master in Berkeley clock synchronization algorithm
• Types of election algorithms: Bully and Ring algorithms

19

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Bully Algorithm
• Each process has a unique numerical ID
• Processes know the Ids and address of every other

process
• Communication is assumed reliable
• Key Idea: select process with highest ID
• Process initiates election if it just recovered from failure

or if coordinator failed
• 3 message types: election, OK, I won
• Several processes can initiate an election simultaneously

– Need consistent result
• O(n2) messages required with n processes

20

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Bully Algorithm Details
• Any process P can initiate an election
• P sends Election messages to all process with higher Ids

and awaits OK messages
• If no OK messages, P becomes coordinator and sends I

won messages to all process with lower Ids
• If it receives an OK, it drops out and waits for an I won
• If a process receives an Election msg, it returns an OK

and starts an election
• If a process receives a I won, it treats sender an

coordinator

21

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Bully Algorithm Example
• The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

22

Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Bully Algorithm Example
d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

23

