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Last Class: Classical Problems in 
Distributed Systems

• Time ordering and clock synchronization 
• GPS 
• Lamport’s Clocks
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Today: More Classical Problems
• Vector Clocks 

• Distributed Snapshots  

• Termination Detection 

• Leader election 

• Mutual exclusion
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Logical Clocks
• For many problems, internal consistency of clocks is 

important 
– Absolute time is less important 
– Use logical clocks 

• Key idea: 
– Clock synchronization need not be absolute 
– If two machines do not interact, no need to synchronize them 
– More importantly, processes need to agree on the order in 

which events occur rather than the time at which they occurred

3



Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Event Ordering
• Problem: define a total ordering of all events that occur 

in a system 
• Events in a single processor machine are totally ordered 
• In a distributed system: 

– No global clock, local clocks may be unsynchronized 
– Can not order events on different machines using local times 

• Key idea [Lamport ] 
– Processes exchange messages 
– Message must be sent before received 
– Send/receive used to order events (and synchronize clocks)

4



Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Happened Before Relation

• If A and B are events in the same process and A executed before B, 
then  A -> B 

• If A represents sending of a message and B is the receipt of this 
message, then A -> B 

• Relation is transitive: 
– A -> B and B -> C  => A -> C 

• Relation is undefined across processes that do not exchange 
messages 
– Partial ordering on events
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Event Ordering Using HB
• Goal: define the notion of time of an event such that 

– If A-> B then C(A) < C(B) 
– If  A and B are concurrent, then C(A)  <, = or > C(B) 

• Solution:  
– Each processor maintains a logical clock  LCi 
– Whenever an event occurs locally at I, LCi = LCi+1 
– When i sends message to j, piggyback Lci 
– When  j receives message from i 

• If LCj < LCi then LCj = LCi +1 else do nothing 
– Claim: this algorithm meets the above goals

6



Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Lamport’s Logical Clocks
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Example: Totally-Ordered Multicasting
• Updating a replicated database and leaving it in an inconsistent 

state. - 
–  only need to order messages (no need to compare local events)  
– send every message to all nodes.
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Causality

• Lamport’s logical clocks 
– If  A -> B then C(A) < C(B) 
– Reverse is not true!! 

• Nothing can be  said about events by comparing time-stamps! 
• If C(A) < C(B), then ?? 

• Need to maintain causality 
– If a -> b then a is casually related to b 
– Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n) 
– Capture causal relationships between groups of processes 
– Need a time-stamping mechanism such that: 

• If T(A) < T(B) then A should have causally preceded B
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Vector Clocks
• Each process i maintains a vector Vi 

– Vi[i] : number of events that have occurred at i 
– Vi[j] : number of events I knows have occurred at process j 

• Update vector clocks as follows 
– Local event: increment Vi[I] 
– Send a message :piggyback entire vector V 
– Receipt of a message: Vj[k] = max( Vj[k],Vi[k] ) 

• Receiver is told about how many events the sender knows 
occurred at another process k 

• Also Vj[i] = Vj[i]+1 
• Exercise: prove that if V(A)<V(B), then A causally 

precedes B and the other way around.
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Enforcing Causal Communication
• Figure 6-13. Enforcing causal communication.
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Global State
• Global state of a distributed system 

– Local state of each process 
– Messages sent but not received (state of the queues) 

• Many applications need to know the state of the system 
– Failure recovery, distributed deadlock detection 

• Problem: how can you figure out the state of a 
distributed system? 
– Each process is independent 
– No global clock or synchronization 

• Distributed snapshot: a consistent global state
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Global State (1)

a) A consistent cut 
b) An inconsistent cut
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Distributed Snapshot Algorithm
• Assume each process communicates with another 

process using unidirectional point-to-point channels (e.g, 
TCP connections) 

• Any process can initiate the algorithm 
– Checkpoint local state  
– Send marker on every outgoing channel 

• On receiving a marker 
– Checkpoint state if first marker and send marker on outgoing 

channels, save messages on all other channels until: 
– Subsequent marker on a channel: stop saving state for that 

channel
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Distributed Snapshot
• A process finishes when 

– It receives a marker on each incoming channel and processes 
them all 

– State: local state plus state of all channels 
– Send state to initiator 

• Any process can initiate snapshot 
– Multiple snapshots may be in progress  

• Each is separate, and each is distinguished by tagging the 
marker with the initiator ID (and sequence number)

A
C

BM

M

15



Computer Science Lecture 13, page CS677: Distributed OSCS677: Distributed OS

Snapshot Algorithm Example

a) Organization of a process and channels for a distributed snapshot
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Snapshot Algorithm Example

b) Process Q receives a marker for the first time and records its local state 
c) Q records all incoming message 
d) Q receives a marker for its incoming channel and finishes recording the state 

of the incoming channel
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Termination Detection
• Detecting the end of a distributed computation 
• Notation: let sender be predecessor, receiver be successor 
• Two types of markers: Done and Continue 
• After finishing its part of the snapshot, process Q sends a Done or 

a Continue to its predecessor 
• Send a Done only when 

– All of Q’s successors send a Done 
– Q has not received any message since it check-pointed its local state and 

received a marker on all incoming channels 
– Else send a Continue 

• Computation has terminated if the initiator receives Done 
messages from everyone
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Election Algorithms
• Many distributed algorithms need one process to act as 

coordinator 
– Doesn’t matter which process does the job, just need to pick 

one 
• Election algorithms: technique to pick a unique 

coordinator (aka leader election) 
• Examples: take over the role of a failed process, pick a 

master in Berkeley clock synchronization algorithm 
• Types of election algorithms: Bully and Ring algorithms
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Bully Algorithm
• Each process has a unique numerical ID 
• Processes know the Ids and address of every other 

process 
• Communication is assumed reliable 
• Key Idea: select process with highest ID 
• Process initiates election if it just recovered from failure 

or if coordinator failed 
• 3 message types: election, OK, I won 
• Several processes can initiate an election simultaneously 

– Need consistent result 
• O(n2) messages required with n processes
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Bully Algorithm Details
• Any process P can initiate an election 
• P sends Election messages to all process with higher Ids 

and awaits OK messages 
• If no OK messages, P becomes coordinator and sends I 

won messages to all process with lower Ids 
• If it receives an OK, it drops out and waits for an I won 
• If a process receives an Election msg, it returns an OK 

and starts an election 
• If a process receives a I won, it treats sender an 

coordinator
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Bully Algorithm Example
• The bully election algorithm 
• Process 4 holds an election 
• Process 5 and 6 respond, telling 4 to stop 
• Now 5 and 6 each hold an election
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Bully Algorithm Example
d) Process 6 tells 5 to stop 
e) Process 6 wins and tells everyone
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