Last Class: Classical Problems in
Distributed Systems

* Time ordering and clock synchronization
* GPS
» Lamport’s Clocks

F o,
R e & . g
Eﬁ 55% Compu‘l'er' Science CS677: Distributed OS Lecture 13, page |

Today: More Classical Problems

* Vector Clocks
 Distributed Snapshots
» Termination Detection
» Leader election

 Mutual exclusion

) 0 2)
%f* %' 5 Computer Science CS677: Distributed OS Lecture 13, page 2

4, lf]

Logical Clocks

* For many problems, internal consistency of clocks i1s
important
— Absolute time 1s less important
— Use logical clocks
» Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order 1n
which events occur rather than the #ime at which they occurred

4 B
& & ©®

4
& o
=

>

oF
R
a5

Computer Science CS677: Distributed OS Lecture 13, page 3

VA
S 2
B R @
el =
\\+ a‘ 5

L/
N
ERS
RST *

Event Ordering

* Problem: define a total ordering of all events that occur
In a system

* Events 1n a single processor machine are totally ordered

* In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
» Key idea [Lamport |

— Processes exchange messages

— Message must be sent before received

— Send/receive used to order events (and synchronize clocks)

¥ MAg
< S

< «1r,
(> C

S .,& o;c

Ok MAg,
ZW\\ = /&
&\

S\

/ § Computer Science CS677: Distributed OS Lecture 13, page 4

ERST &

Happened Before Relation

« If 4 and B are events in the same process and 4 executed before B,
then 4 -> B

» If A represents sending of a message and B 1s the receipt of this
message, then A -> B

e Relation 1s transitive:
— A>BandB->C =A->C

» Relation 1s undefined across processes that do not exchange
messages

— Partial ordering on events

i

éd g gﬁ J:L'Ce
i% Compufer Science CS677: Distributed OS Lecture 13, page 5
% £

& ®S @
;.v B D Y@
D' o 5
b e

4’/\[ER

Event Ordering Using HB

* @Goal: define the notion of time of an event such that
— If A-=> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, =or > C(B)

* Solution:
— Each processor maintains a logical clock LC.

— Whenever an event occurs locally at I, LC.= LC.+1
— When i sends message to j, piggyback Lc.

— When j receives message from i
- If LG, <LC, then LC, = LC, +1 else do nothing

— Claim: this algorithm meets the above goals

QEMAg

< s,

& 7

Sy $ S
&

M {
) =S 2\
<y v*l? > @
\-’r" ~
2 NV &
7, _f &
ST

:
A

Computer Science CS677: Distributed OS Lecture 13, page 6

4’1'76‘}{

Lamport’s Logical Clocks

0 0 0 3 2 Ps
..................... 0 0 0
O —my | 10 L m, [E o
"""""""""""""""""" 1
L3 e - 2] yie 20
.18 24 %..‘39_ 18 24l m, |30
Iee? e - 24 32 40
30 40 50 30 |P2 adjusts [40 50
36 148 60 36| its clock (48 60
42 s/« ™5 |70 | e |0
48 64 180 48 69 80
saf M. |72 90 o1 ™ |77 90
60 80 100 76| B, adjusts 85 100
its clock
(a) (b)
iﬁ % f* Computer Science CS677: Distributed OS Lecture 13, page 7

Example: Totally-Ordered Multicasting

» Updating a replicated database and leaving it in an inconsistent
state. -

— only need to order messages (no need to compare local events)
— send every message to all nodes.

% Update 1 Update’é‘_i

Replicated datab
Update 1 is eplicated database Update 2 is
performed before performed before
update 2 update 1

i : @ Compu‘l'er' Science CS677: Distributed OS Lecture 13, page 8

Causality

* Lamport’s logical clocks
— If A-> Bthen C(4) < C(B)
— Reverse 1s not true!!
* Nothing can be said about events by comparing time-stamps!
» If C(4) < C(B), then ??
* Need to maintain causality
— If a -> b then a 1s casually related to b
— Causal delivery:If send(m) -> send(n) => deliver(m) -> deliver(n)
— Capture causal relationships between groups of processes
— Need a time-stamping mechanism such that:

» I[f T(4) < T(B) then A4 should have causally preceded B

QFMAg

< Sq

& @
&

M {
7 =N 2
“;I v-E é‘ 7) 1,[!;
2 \+ /) B
S\UL /78 ,

ST

:
A

Computer Science CS677: Distributed OS Lecture 13, page 9

41[YER

Vector Clocks

Each process i maintains a vector V.

— V.[i] : number of events that have occurred at 1
— V.[j] : number of events I knows have occurred at process]

» Update vector clocks as follows
— Local event: increment V [I]

— Send a message :piggyback entire vector V
— Receipt of a message: V,/k] = max(V/k],V[k])

* Receiver 1s told about how many events the sender knows
occurred at another process &

« Also V[i] =V [i]+]

» FExercise: prove that if V(4)<V(B), then A causally
precedes B and the other way around.

& \i§’ § Computer Science CS677: Distributed OS Lecture 13, page 10
b, % £

Enforcing Causal Communication

 Fioure 6-13. Enforcinge causal communication.

VG, = (1,0,0) VC, = (1,1,0)
P, .
P1
P2

OF M4 f
& & B
& W B
%%
b, N &

/RSt -

Computer Science CS677: Distributed OS Lecture 13, page 11

Global State

* Global state of a distributed system

— Local state of each process
— Messages sent but not received (state of the queues)

* Many applications need to know the state of the system
— Failure recovery, distributed deadlock detection

* Problem: how can you figure out the state of a
distributed system?
— Each process 1s independent
— No global clock or synchronization

 Distributed snapshot: a consistent global state

QFMAg

< Sq

& @
&

M {
7 =N 2
v &
a «N\V7 &
ST

|Computer Science CS677: Distributed OS Lecture 13, page 12

:
A

41[YER

Global State (1)

Consistent cut

P1 Time —»

\\

Inconsistent cut

P1 Time —»

Rl

P2 P2
1\\\ \m2
P3 \\ 3‘ P3
Sender of m2 cannot
be identified with this cut
(@) (b)

a) A consistent cut
b) An inconsistent cut

CS677: Distributed OS Lecture 13, page 13

Computer Science

Distributed Snapshot Algorithm

* Assume each process communicates with another
process using unidirectional point-to-point channels (e.g,
TCP connections)

* Any process can 1nitiate the algorithm

— Checkpoint local state
— Send marker on every outgoing channel

* On recelving a marker

— Checkpoint state 1f first marker and send marker on outgoing
channels, save messages on all other channels until:

— Subsequent marker on a channel: stop saving state for that
channel

& X
& &L @
(=\
i

g N ©
= I
2 5
7
A

5 Computer Science CS677: Distributed OS Lecture 13, page 14

¥)
g
e}
S

A,
v
=

Distributed Snapshot

* A process finishes when

— It receives a marker on each incoming channel and processes
them all

— State: local state plus state of all channels

— Send state to initiator >
. . . M
* Any process can 1nitiate snapshot A/
— Multiple snapshots may be 1n progress W -

» Each 1s separate, and each 1s distinguished by tagging’the
marker with the initiator ID (and sequence number)

¥

< S,
< <5
(> C
S $ «,c

OF 1
SR
7\ =
U
S

2 Compu‘rer' Science CS677: Distributed OS Lecture 13, page 15
O, R &5

ER

Snapshot Algorithm Example

Incoming Outgoing
message Process State message

M

-
— Local
Marker filesystem
(a)

a) Organization of a process and channels for a distributed snapshot

QF M4 ¢

. &)
& & @
8
e \'¥) 5

N &
7 -_u,m‘ &5

NUERST + o

Computer Science CS677: Distributed OS Lecture 13, page 16

Snapshot Algorithm Example

M—> T H —»
laf—bHc Q W — M d» Q _I: Q T
tjr__“ SRR [
lal|bllc la][b][c][d
Recorded
state
(b) () (d)

b) Process Q receives a marker for the first time and records its local state
C) Q records all incoming message

d) O receives a marker for its incoming channel and finishes recording the state
of the incoming channel

OF M4 »

5,
& Ce
£/ gk ¢

Y o> B

= ol S

= ‘% ' 5
D, \@

/i,,:.R

Computer Science CS677: Distributed OS Lecture 13, page 17

S 4
SIS

Termination Detection

* Detecting the end of a distributed computation
* Notation: let sender be predecessor, receiver be successor
* Two types of markers: Done and Continue

 After finishing its part of the snapshot, process O sends a Done or
a Continue to its predecessor

* Send a Done only when
— All of O’s successors send a Done

— 0 has not received any message since it check-pointed its local state and
received a marker on all incoming channels

— FElse send a Continue

« Computation has terminated 1f the initiator receives Done
messages from everyone

OF Md s

R
§ & @
> ok B
SR\ 1), [T
ZE\ \Hr -
= ,_; I,
7 QA
5 A
RST

Computer Science CS677: Distributed OS Lecture 13, page 18

4 [1176

Election Algorithms

* Many distributed algorithms need one process to act as
coordinator

— Doesn’t matter which process does the job, just need to pick
one
 Election algorithms: technique to pick a unique
coordinator (aka leader election)

» Examples: take over the role of a failed process, pick a
master 1in Berkeley clock synchronization algorithm

* Types of election algorithms: Bully and Ring algorithms

A

0

< Sq

»H &L ©
R

:
A

M {
) =5 A
éu ':E é‘ > G
Z R\ \-’r 3
D' ,___ I,
7 Q554 S5
ST

Computer Science CS677: Distributed OS Lecture 13, page 19

QHER

Bully Algorithm

» Each process has a unique numerical ID

* Processes know the Ids and address of every other
Process

 Communication 1s assumed reliable
» Key Idea: select process with highest ID

* Process 1nitiates election 1if 1t just recovered from failure
or 1f coordinator failed

* 3 message types: election, OK, I won

* Several processes can 1nitiate an election simultaneously
— Need consistent result

* O(n?) messages required with n processes

R » Compu'rer' Science CS677: Distributed OS Lecture 13, page 20

Bully Algorithm Detalls

* Any process P can initiate an election

* P sends Election messages to all process with higher Ids
and awaits OK messages

» If no OK messages, P becomes coordinator and sends /
won messages to all process with lower Ids

 If it receives an OK, 1t drops out and waits for an / won

 If a process receives an Election msg, it returns an OK
and starts an election

» If a process receives a [won, 1t treats sender an
coordinator

4 B
& & ©®

MY
L % 2
g.l iRl *E“ g/. ‘l"l‘
\+ 5
P L é’ “
% A
=t \‘bb
RST *

oF
1, 3
a5

Computer Science CS677: Distributed OS Lecture 13, page 21

Bully Algorithm Example

(D)
@\/Electi:n @ 4 OK @ w

Previous coordinator
has crashed

(2) (b) (c)
N Tl @
7 % 5 Compu'l'er' Science CS677: Distributed OS Lecture 13, page 22
& 2 &5

Bully Algorithm Example

) O 2)
5; 5&% Computer Science CS677: Distributed OS Lecture 13, page 23

