Last Class: Naming

* Naming
— Distributed naming
— DNS
— LDAP
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Today: Classical Problems in Distributed
Systems

* Time ordering and clock synchronization (today)

Next few classes:

* Leader election

¢ Mutual exclusion

» Distributed transactions
* Deadlock detection
CAP Theorem
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Clock Synchronization

» Time in unambiguous 1n centralized systems
— System clock keeps time, all entities use this for time

* Distributed systems: each node has own system clock

— Crystal-based clocks are less accurate (1 part in million)

— Problem: An event that occurred after another may be assigned
an earlier time

OF M4 ¢
< V7
»H &L ©
L S 2\
:L;' iRl é“ (B g{r
= % I/
D % L)
'1717 ===l
ERST &

Computer Science
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Physical Clocks: A Primer

Accurate clocks are atomic oscillators (one part in 1013)

Most clocks are less accurate (e.g., mechanical watches)

— Computers use crystal-based blocks (one part in million)
— Results in clock drift

How do you tell time?

— Use astronomical metrics (solar day)

Coordinated universal time (U7'C) — international standard based on atomic
time

— Add leap seconds to be consistent with astronomical time

— UTC broadcast on radio (satellite and earth)

— Receivers accurate to 0.1 — 10 ms

Need to synchronize machines with a master or with one another
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Clock Synchronization

« Each clock has a maximum drift rate p
e 1-p <=dC/dt <= 1+p
— Two clocks may drift by 2p At in time At
— To limit drift to 0 => resynchronize every 6/2p seconds

Clock time, C

UTC, t
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Cristian’s Algorithm

* Synchronize machines to a
time server with a UTC

. process P time server
receiver
e Machine P requests time from \
server every 0/2p seconds teog
- - <1
— Receives time ¢ from server, P t repty ’/
sets clock to A, where reply _V time
1s the time to send reply to P
— Use (£, 1,,1,)/2 s an estimate .y
of treply v

— Improve accuracy by making a
series of measurements
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Berkeley Algorithm

* Used 1n systems without UTC receiver
— Keep clocks synchronized with one another
— One computer 1s master, other are slaves
— Master periodically polls slaves for their times
* Average times and return differences to slaves
« Communication delays compensated as in Cristian’s algo
— Failure of master => election of a new master
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Berkeley Algorithm

Time daemon

3:00

: 3:00 3:05
' 3:00
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2:50 3:25 2:50 3:25 3:05 3:05

(a) (b) (c)

a) The time daemon asks all the other machines for their clock values
b) The machines answer

C) The time daemon tells everyone how to adjust their clock
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Distributed Approaches

* Both approaches studied thus far are centralized

* Decentralized algorithms: use resync intervals
— Broadcast time at the start of the interval
— Collect all other broadcast that arrive in a period S
— Use average value of all reported times
— Can throw away few highest and lowest values

* Approaches in use today

— rdate: synchronizes a machine with a specified machine
— Network Time Protocol (NTP) - discussed 1n a later slide
 Uses advanced techniques for accuracies of 1-50 ms
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Network Time Protocol

dTreq dTres

* Widely used standard - based on Cristian’s algo
— Uses eight pairs of delays from A to B and B to A.

e Hierarchical — uses notion of stratum
== * Clock can not go backward
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Global Positioning System

A
Height

Point to be
ignored

(14,14)

» Computing a position in a two-dimensional space.
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Global Positioning System

» Real world facts that complicate GPS

» It takes a while before data on a
satellite’s position reaches the
receiver.

* The recerver’s clock 1s generally not
in synch with that of a satellite.
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GPS Basics

D, —deviation of recerver from actual time

Beacon with timestamp T.received at T
— Delay D;= (T, —T) + D,
— Distanced, =¢ (T, - T)
— Also d; = sqrt[ (x;i-x,)* + (y;-y,)* + (z-2,)* ]

* Four unknowns, need 4 satellites.
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Clock Synchronization in Wireless Networks

Message preparation

\ Time spent in NIC
/ Delivery time

to app. —

< >
Critical path

(b)
» Reference broadcast sync (RBS): receivers synchronize with one
another using RB server

— Mutual offset =T, - T, (can average over multiple readings)
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Logical Clocks

* For many problems, internal consistency of clocks 1s
important
— Absolute time 1s less important
— Use logical clocks
» Key idea:
— Clock synchronization need not be absolute
— If two machines do not interact, no need to synchronize them

— More importantly, processes need to agree on the order in
which events occur rather than the time at which they occurred
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Event Ordering

* Problem. define a total ordering of all events that occur
In a system

* Events 1n a single processor machine are totally ordered

* In a distributed system:

— No global clock, local clocks may be unsynchronized

— Can not order events on different machines using local times
» Key idea [Lamport ]

— Processes exchange messages

— Message must be sent before received
— Send/receive used to order events (and synchronize clocks)
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Happened Before Relation

» If 4 and B are events in the same process and 4 executed before B,
then 4 -> B

» If A represents sending of a message and B 1s the receipt of this
message, then A -> B

» Relation 1s transitive:
— A>BandB->C ==A->C
» Relation 1s undefined across processes that do not exchange
messages

— Partial ordering on events
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Event Ordering Using HB

* (Goal: define the notion of time of an event such that
— If A-> B then C(A) < C(B)
— If A and B are concurrent, then C(A) <, =or > C(B)

* Solution:
— Each processor maintains a logical clock LC.

— Whenever an event occurs locally at I, LC.= LC.+1
— When i sends message to j, piggyback Lc.

— When j receives message from i
» It LC; < LC, then LC; = LC; +1 else do nothing

— Claim: this algorithm meets the above goals
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Lamport’s Logical Clocks

0 0 0 3 2 Ps
..................... 0 0 0
O —my | 10 L m, [E o
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L3 e - 2] yie 20
.18 24 %..‘39_ 18 24l m, |30
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Example: Totally-Ordered Multicasting

E Updatet 999_61@_%___%

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

a% FComputer Science CS677: Distributed OS Lecture 12, page 20



