
Computer Science Lecture 7, page

Today’s Class

• VM migration wrap-up
• Communication in distributed systems
• Remote Procedure Calls

1

Computer Science Lecture 7, page

Virtual Machine Migration Recap

• Transfer VM state from one host to another
• VM state = CPU + memory + disk + network state
• Last time: memory state transfer using pre-copy

– Memory state changes continuously
– Changed memory state (dirty pages) are iteratively transferred

• Pre-copy : copy the VM state first, and then execute VM
on destination host

2

Computer Science Lecture 7, page

Post-copy VM Migration

• Pre-copy : copy the VM state first, and then execute VM
on destination host

• Post-copy: Begin VM execution on destination, and then
copy VM state

• In post-copy, VM (almost) immediately begins running
on destination

• Tradeoffs: immediacy of migration, performance,…

3

Computer Science Lecture 7, page 4

Communication in Distributed Systems

Fundamental problem: How to share information and
state among distributed entities (processes) ?

Temp
Sensor

Climate
Controller

Temperature

Computer Science Lecture 7, page

Communication in Distributed Systems

• Components of distributed systems : processes
• Processes can run on different machines

– Process execution is independent and decoupled
• How do processes communicate with each other?

– Transfer of data (message passing)
– Transfer of data and control

5

Process A Process B

Local State Local State

Computer Science Lecture 8, page CS677: Distributed OS

Communication Between Processes

• Unstructured communication
– Use shared memory or shared data structures

• Structured communication
– Use explicit messages (IPCs)
– Communication may be over the network

6

Computer Science Lecture 8, page CS677: Distributed OS

Communication over the Network

• Processes communicate by sharing messages over a network
• A typical message as it appears on the network.

7

Computer Science Lecture 8, page CS677: Distributed OS

Messaging in Distributed Systems

• Message-oriented Communication
• Remote Procedure Calls

– Transparency but poor for passing references
• Remote Method Invocation

– RMIs are essentially RPCs but specific to remote objects
– System wide references passed as parameters

• Stream-oriented Communication

8

Computer Science Lecture 8, page CS677: Distributed OS

Communication Patterns

• Client-pull architecture
– Clients pull data from servers (by sending requests)
– Example: HTTP
– Pro: stateless servers, failures are easy to handle
– Con: limited scalability

• Server-push architecture
– Servers push data to client
– Example: video streaming, stock tickers
– Pro: more scalable, Con: stateful servers, less resilient to failure

• When/how-often to push or pull?

9

Computer Science Lecture 8, page CS677: Distributed OS

Group Communication

• One-to-many communication: useful for distributed
applications

• Issues:
– Group characteristics:

• Static/dynamic, open/closed
– Group addressing

• Multicast, broadcast, application-level multicast (unicast)
– Atomicity
– Message ordering
– Scalability

10

Computer Science Lecture 7, page

Remote Procedure Calls

• Procedure (function) calls a well known and understood
mechanism for transfer of data and control within a
program/process

• Remote Procedure Calls : extend conventional local calls
to work across processes.
– Processes may be running on different machines
– Allows communication of data via function parameters and

return values
– RPC invocations also serve as notifications (transfer of

control)

11

Computer Science Lecture 7, page

RPC Example

12

Client Server
return action

Parameters passed over a network channel

update_temp(device, temp)

Computer Science Lecture 7, page

RPC Advantages

• Clean and simple to understand semantics similar to
local procedure calls

• Generality: all languages have local procedure calls
– RPC libraries augment the procedure call interface to make

RPCs appear similar to local calls

13

push_temp(name) {
 t = get_current_temp();

return update_temp (name, t); //RPC
}

Computer Science Lecture 7, page

Challenges
• RPCs impose new challenges not faced in local calls
• How to pass parameters?

– Passing data over a network raises issues like endian-ness
– Pointers: machines may not share an address space

• How to deal with machine failures?
– Local procedures are assumed to always run
– A remote machine running an RPC may face crashes, network

issues
– Need to consider failure semantics in RPC implementations

• How to integrate RPCs with existing language runtimes?
– Seamless local and remote calls
– Integrate RPCs with language caller/callee interface

14

Computer Science Lecture 8, page CS677: Distributed OS

RPC Semantics

• Principle of RPC between a client and server program [Birrell&Nelson 1984]

15

Computer Science Lecture 7, page

How RPCs Work

• Each process has 2 additional components:
code stubs and RPC runtime

• Code stubs “translate” local calls remote calls
– Pack/unpack parameters

• RPC runtime transmits these translated calls over the
network
– Wait for result

16

Computer Science Lecture 8, page CS677: Distributed OS

How RPCs Work

2-8

17

Computer Science Lecture 8, page CS677: Distributed OS

Parameter Passing

• Local procedure parameter passing
– Call-by-value
– Call-by-reference: arrays, complex data structures

• Remote procedure calls simulate this through:
– Stubs – proxies
– Flattening – marshalling

• Related issue: global variables are not allowed in RPCs

18

Computer Science Lecture 8, page CS677: Distributed OS

Client and Server Stubs

• Client makes procedure call (just like a local procedure
call) to the client stub

• Server is written as a standard procedure
• Stubs take care of packaging arguments and sending

messages
• Packaging parameters is called marshalling
• Stub compiler generates stub automatically from specs in

an Interface Definition Language (IDL)
– Simplifies programmer task

19

Computer Science Lecture 8, page CS677: Distributed OS

Steps of a Remote Procedure Call
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

20

Computer Science Lecture 8, page CS677: Distributed OS

Marshalling

• Problem: different machines have different data formats
– Intel: little endian, SPARC: big endian

• Solution: use a cross-platform, general, standard representation
– Example: external data representation (XDR)

• Problem: how do we pass pointers?
– If it points to a well-defined data structure, pass a copy and the server stub

passes a pointer to the local copy
• What about data structures containing pointers?

– Prohibit
– Chase pointers over network

• Marshalling: transform parameters/results into a byte stream
(serialization of parameters)

21

Computer Science Lecture 8, page CS677: Distributed OS

Binding

• Problem: how does a client locate a server?
– How does caller code locate and call the callee
– Use bindings (similar to how symbols are bound to variables

during run-time in local programs)
• Server

– Export server interface during initialization
– Send name, version no, unique identifier, handle (address) to

binder
• Client

– First RPC: send message to binder to import server interface
– Binder: check to see if server has exported interface

• Return handle and unique identifier to client
22

Computer Science Lecture 7, page

Binding Information

23

Computer Science Lecture 8, page CS677: Distributed OS

Binding: Comments

• Binding is at run-time
– Better handling of partial failures (clients can try other

advertised end-points, protocols, etc.)
– Increased dynamism

• Exporting and importing incurs overheads
• Binder can be a bottleneck

– Use multiple binders
• Binder can do load balancing

24

Computer Science Lecture 8, page CS677: Distributed OS

Failure Semantics

• Client unable to locate server: return error
• Lost request messages: simple timeout mechanisms
• Lost replies: timeout mechanisms

– Make operation idempotent
– Use sequence numbers, mark retransmissions

• Server failures: did failure occur before or after operation?
– At least once semantics / Idempotent (SUNRPC)
– At most once
– No guarantee
– Exactly once: desirable but difficult to achieve

25

Computer Science Lecture 8, page CS677: Distributed OS

Failure Semantics

• Client failure: what happens to the server computation?
– Referred to as an orphan
– Extermination: log at client stub and explicitly kill orphans

• Overhead of maintaining disk logs
– Reincarnation: Divide time into epochs between failures and

delete computations from old epochs
– Gentle reincarnation: upon a new epoch broadcast, try to

locate owner first (delete only if no owner)
– Expiration: give each RPC a fixed quantum T; explicitly

request extensions
• Periodic checks with client during long computations

26

Computer Science Lecture 8, page CS677: Distributed OS

Implementation Issues
• Choice of protocol [affects communication costs]

– Use existing protocol (UDP) or design from scratch
– Packet size restrictions
– Reliability in case of multiple packet messages
– Flow control

• Copying costs are dominant overheads
– Need at least 2 copies per message

• From client to NIC and from server NIC to server
– As many as 7 copies

• Stack in stub – message buffer in stub – kernel – NIC –
medium – NIC – kernel – stub – server

27

Computer Science Lecture 8, page CS677: Distributed OS

Case Study: SUNRPC

• One of the most widely used RPC systems
• Developed for use with NFS
• Built on top of UDP or TCP

– TCP: stream is divided into records
– UDP: max packet size < 8912 bytes
– UDP: timeout plus limited number of retransmissions
– TCP: return error if connection is terminated by server

• Multiple arguments marshaled into a single structure
• At-least-once semantics if reply received, at-least-zero semantics

if no reply. With UDP tries at-most-once
• Use SUN’s eXternal Data Representation (XDR)

– Big endian order for 32 bit integers, handle arbitrarily large data structures

28

Computer Science Lecture 8, page CS677: Distributed OS

Binder: Port Mapper

•Server start-up: create port
•Server stub calls svc_register to
register prog. #, version # with
local port mapper
•Port mapper stores prog #,
version #, and port
•Client start-up: call clnt_create
to locate server port
•Upon return, client can call
procedures at the server

29

Computer Science Lecture 8, page CS677: Distributed OS

Rpcgen: generating stubs

• Q_xdr.c: do XDR conversion
• Detailed example: add rpc

30

Computer Science Lecture 7, page

Modern RPCs & Protocol Buffers

• Many distributed systems use RPCs today (Mesos)
• Common paradigm: serialize function calls in some

serialization format (XML, JSON,…) and send over
HTTP (xmlrpclib, etc.)

• HTTP servers unpacks and executes the remote call
• For serialization, protocol-buffers are typically used

– Compact, binary format
– Faster to serialize and deserialize
– Multi-language support.

31

Computer Science Lecture 8, page CS677: Distributed OS

Summary

• RPCs make distributed computations look like local
computations

• Issues:
– Parameter passing
– Binding
– Failure handling

• Case Study: SUN RPC

32

