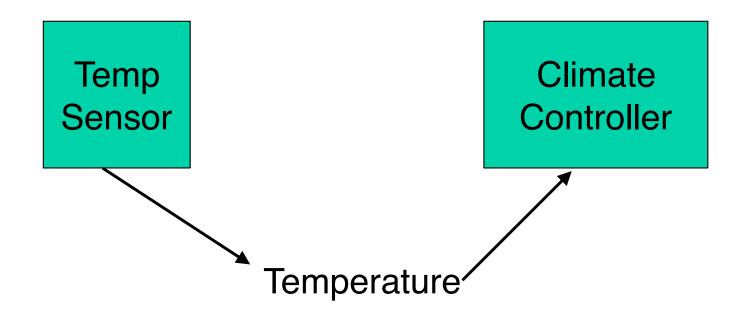
Today's Class

- VM migration wrap-up
- Communication in distributed systems
- Remote Procedure Calls

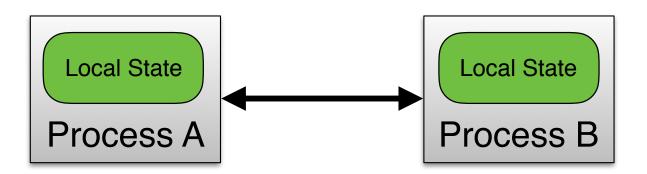
Virtual Machine Migration Recap

- Transfer VM state from one host to another
- VM state = CPU + **memory** + disk + network state
- Last time: memory state transfer using **pre-copy**
 - Memory state changes continuously
 - Changed memory state (dirty pages) are iteratively transferred
- Pre-copy : copy the VM state first, and then execute VM on destination host


Post-copy VM Migration

- Pre-copy : copy the VM state first, and then execute VM on destination host
- Post-copy: Begin VM execution on destination, and then copy VM state
- In post-copy, VM (almost) immediately begins running on destination
- Tradeoffs: immediacy of migration, performance,...

Communication in Distributed Systems

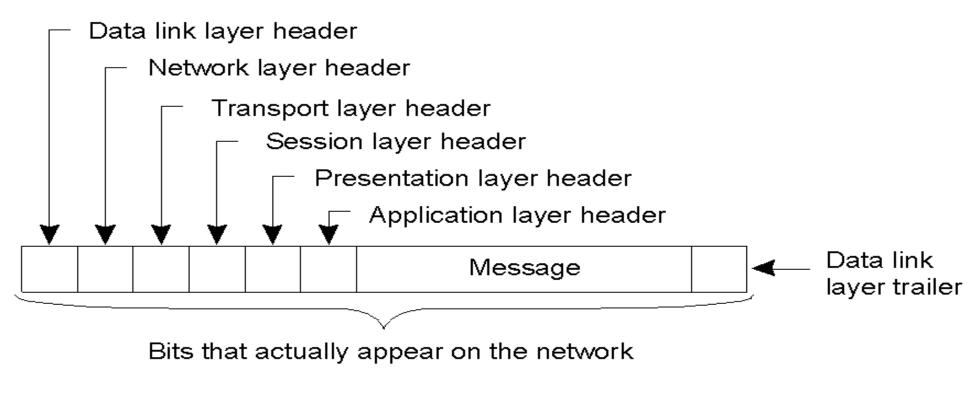

Fundamental problem: How to share information and state among distributed entities (processes) ?

Communication in Distributed Systems

- Components of distributed systems : processes
- Processes can run on different machines
 - Process execution is independent and decoupled
- How do processes communicate with each other?
 - Transfer of data (message passing)
 - Transfer of data and control

Communication Between Processes

- *Unstructured* communication
 - Use shared memory or shared data structures


• Structured communication

- Use explicit messages (IPCs)
- Communication may be over the network

Communication over the Network

- Processes communicate by sharing messages over a network
- A typical message as it appears on the network.

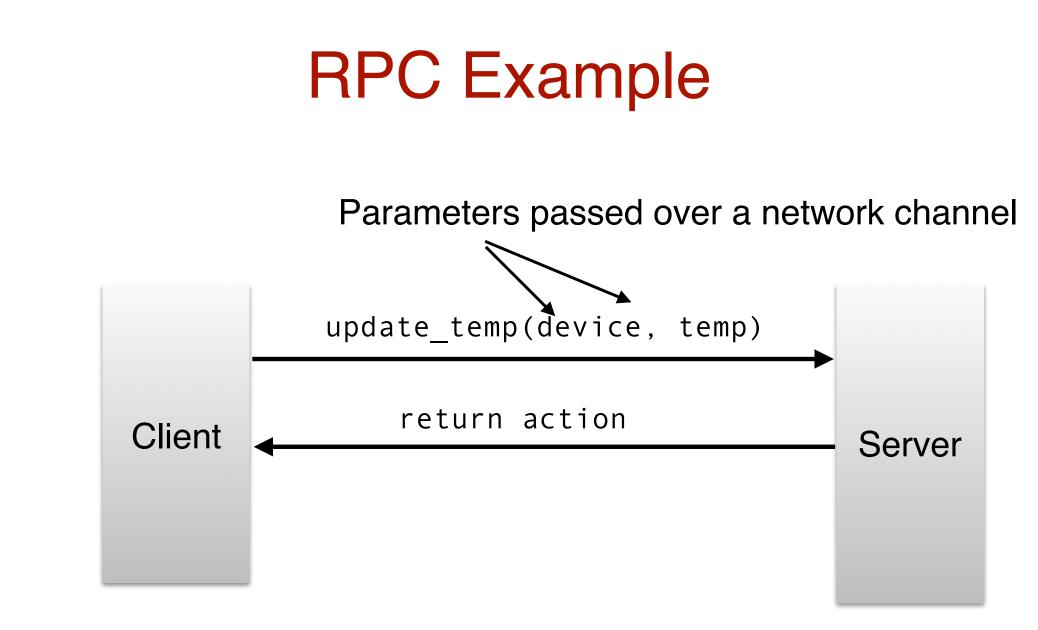
Messaging in Distributed Systems

- Message-oriented Communication
- Remote Procedure Calls
 - Transparency but poor for passing references
- Remote Method Invocation
 - RMIs are essentially RPCs but specific to remote objects
 - System wide references passed as parameters
- Stream-oriented Communication

Communication Patterns

- Client-pull architecture
 - Clients pull data from servers (by sending requests)
 - Example: HTTP
 - Pro: stateless servers, failures are easy to handle
 - Con: limited scalability
- Server-push architecture
 - Servers push data to client
 - Example: video streaming, stock tickers
 - Pro: more scalable, Con: stateful servers, less resilient to failure
- When/how-often to push or pull?

Group Communication


- One-to-many communication: useful for distributed applications
- Issues:
 - Group characteristics:
 - Static/dynamic, open/closed
 - Group addressing
 - Multicast, broadcast, application-level multicast (unicast)
 - Atomicity
 - Message ordering
 - Scalability

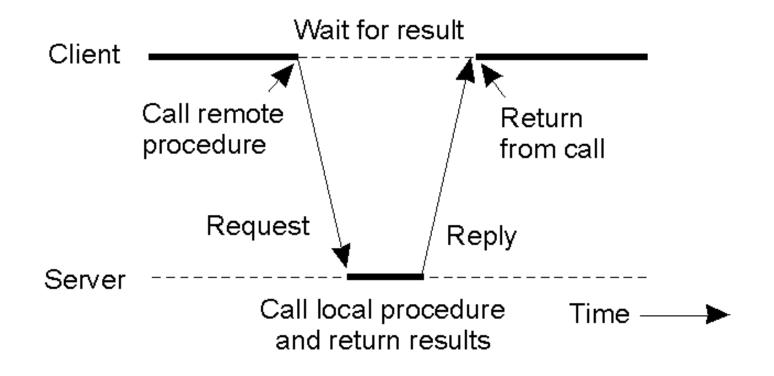
Remote Procedure Calls

- Procedure (function) calls a well known and understood mechanism for transfer of data and control within a program/process
- Remote Procedure Calls : extend conventional local calls to work *across* processes.
 - Processes may be running on different machines
 - Allows communication of data via function parameters and return values
 - RPC invocations also serve as notifications (transfer of control)

RPC Advantages

- Clean and simple to understand semantics similar to local procedure calls
- Generality: all languages have local procedure calls
 - RPC libraries augment the procedure call interface to make RPCs appear similar to local calls

```
push_temp(name) {
t = get_current_temp();
return update_temp (name, t); //RPC
}
```

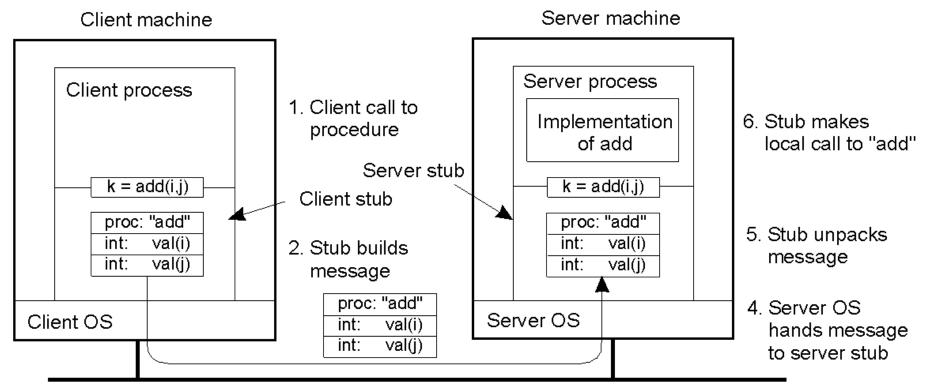


Challenges

- RPCs impose new challenges not faced in local calls
- How to pass parameters?
 - Passing data over a network raises issues like endian-ness
 - Pointers: machines may not share an address space
- How to deal with machine failures?
 - Local procedures are assumed to always run
 - A remote machine running an RPC may face crashes, network issues
 - Need to consider failure semantics in RPC implementations
- How to integrate RPCs with existing language runtimes?
 - Seamless local and remote calls
 - Integrate RPCs with language caller/callee interface

RPC Semantics

• Principle of RPC between a client and server program [Birrell&Nelson 1984]



How RPCs Work

- Each process has 2 additional components: code stubs and RPC runtime
- Code stubs "translate" local calls remote calls
 Pack/unpack parameters
- RPC runtime transmits these translated calls over the network
 - Wait for result

How RPCs Work

3. Message is sent across the network

Parameter Passing

- Local procedure parameter passing
 - Call-by-value
 - Call-by-reference: arrays, complex data structures
- Remote procedure calls simulate this through:
 - Stubs proxies
 - Flattening marshalling
- Related issue: global variables are not allowed in RPCs

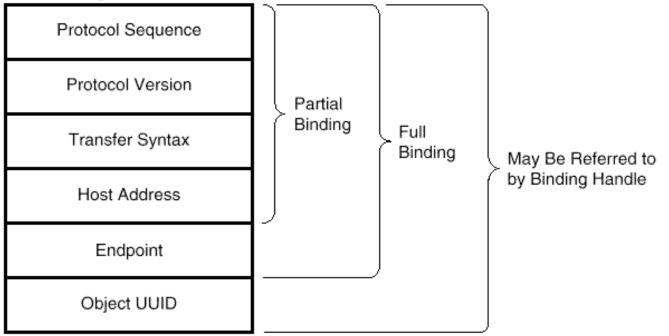
Client and Server Stubs

- Client makes procedure call (just like a local procedure call) to the client stub
- Server is written as a standard procedure
- Stubs take care of packaging arguments and sending messages
- Packaging parameters is called *marshalling*
- Stub compiler generates stub automatically from specs in an Interface Definition Language (IDL)
 - Simplifies programmer task

Steps of a Remote Procedure Call

- 1. Client procedure calls client stub in normal way
- 2. Client stub builds message, calls local OS
- 3. Client's OS sends message to remote OS
- 4. Remote OS gives message to server stub
- 5. Server stub unpacks parameters, calls server
- 6. Server does work, returns result to the stub
- 7. Server stub packs it in message, calls local OS
- 8. Server's OS sends message to client's OS
- 9. Client's OS gives message to client stub
- 10. Stub unpacks result, returns to client

Marshalling


- Problem: different machines have different data formats
 - Intel: little endian, SPARC: big endian
- Solution: use a cross-platform, general, standard representation
 - Example: external data representation (XDR)
- Problem: how do we pass pointers?
 - If it points to a well-defined data structure, pass a copy and the server stub passes a pointer to the local copy
- What about data structures containing pointers?
 - Prohibit
 - Chase pointers over network
- Marshalling: transform parameters/results into a byte stream (serialization of parameters)

Binding

- Problem: how does a client locate a server?
 - How does caller code locate and call the callee
 - Use bindings (similar to how symbols are bound to variables during run-time in local programs)
- Server
 - Export server interface during initialization
 - Send name, version no, unique identifier, handle (address) to binder
- Client
 - First RPC: send message to binder to import server interface
 - Binder: check to see if server has exported interface
- Return handle and unique identifier to client

Binding Information

Binding Information

Other Information

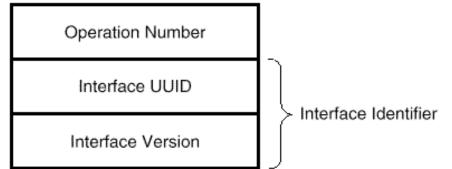


Figure 2-1 Information Required to Complete an RPC

Lecture 7, page23

Binding: Comments

• Binding is at **run-time**

- Better handling of partial failures (clients can try other advertised end-points, protocols, etc.)
- Increased dynamism
- Exporting and importing incurs overheads
- Binder can be a bottleneck
 - Use multiple binders
- Binder can do load balancing

Failure Semantics

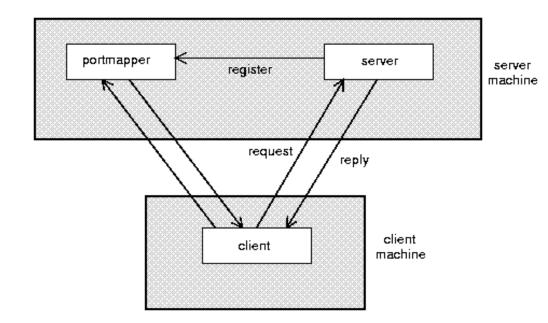
- *Client unable to locate server*: return error
- *Lost request messages*: simple timeout mechanisms
- *Lost replies*: timeout mechanisms
 - Make operation idempotent
 - Use sequence numbers, mark retransmissions
- *Server failures:* did failure occur before or after operation?
 - At least once semantics / Idempotent (SUNRPC)
 - At most once
 - No guarantee
 - Exactly once: desirable but difficult to achieve

Failure Semantics

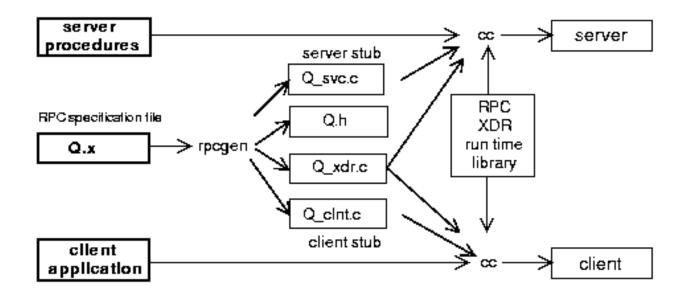
- *Client failure:* what happens to the server computation?
 - Referred to as an *orphan*
 - *Extermination*: log at client stub and explicitly kill orphans
 - Overhead of maintaining disk logs
 - *Reincarnation*: Divide time into epochs between failures and delete computations from old epochs
 - Gentle reincarnation: upon a new epoch broadcast, try to locate owner first (delete only if no owner)
 - *Expiration*: give each RPC a fixed quantum *T*; explicitly request extensions
 - Periodic checks with client during long computations

Implementation Issues

- Choice of protocol [affects communication costs]
 - Use existing protocol (UDP) or design from scratch
 - Packet size restrictions
 - Reliability in case of multiple packet messages
 - Flow control
- Copying costs are dominant overheads
 - Need at least 2 copies per message
 - From client to NIC and from server NIC to server
 - As many as 7 copies
 - Stack in stub message buffer in stub kernel NIC medium NIC kernel stub server


Case Study: SUNRPC

- One of the most widely used RPC systems
- Developed for use with NFS
- Built on top of UDP or TCP
 - TCP: stream is divided into records
 - UDP: max packet size < 8912 bytes
 - UDP: timeout plus limited number of retransmissions
 - TCP: return error if connection is terminated by server
- Multiple arguments marshaled into a single structure
- At-least-once semantics if reply received, at-least-zero semantics if no reply. With UDP tries at-most-once
- Use SUN's eXternal Data Representation (XDR)
 - Big endian order for 32 bit integers, handle arbitrarily large data structures


Binder: Port Mapper

- •Server start-up: create port
- •Server stub calls *svc_register* to register prog. #, version # with local port mapper
- •Port mapper stores prog #, version #, and port
- •Client start-up: call *clnt_create* to locate server port
- •Upon return, client can call procedures at the server

Rpcgen: generating stubs

- Q_xdr.c: do XDR conversion
- Detailed example: add rpc

Modern RPCs & Protocol Buffers

- Many distributed systems use RPCs today (Mesos)
- Common paradigm: serialize function calls in some serialization format (XML, JSON,...) and send over HTTP (xmlrpclib, etc.)
- HTTP servers unpacks and executes the remote call
- For serialization, **protocol-buffers** are typically used
 - Compact, binary format
 - Faster to serialize and deserialize
 - Multi-language support.

Summary

- RPCs make distributed computations look like local computations
- Issues:
 - Parameter passing
 - Binding
 - Failure handling
- Case Study: SUN RPC

