Docker

 Docker uses LLinux containers

cu REST API Dockerfiles

o0g =
& ¢

Operating System Operating System

Hardware Hardware

Hypervisor

Hardware

Type 1 Hypervisor Linux Containers docker

. Computer Science

Lecture 6, page |

LXC Virtualization Using Docker

 Portable: docker images run anywhere docker runs

* Docker decouples LXC provider from operations

— uses virtual resources (LXC virtualization)

« fair share of physical NIC vs use virtual NICs that are fair-
shared

Non-Virtual Virtual

Native Resource

4 \J § Computer Science Lecture 6, page 2

Docker Images and Use

* Docker uses a union file system (AuFS)
— allows containers to use host FS safely

» Essentially a copy-on-write file system
—read-only files shared (e.g., share glibc)
—make a copy upon write

* Allows for small efficient container images

 Docker Use Cases

— “Run once, deploy anywhere”
— Images can be pulled/pushed to repository

— Containers can be a single process (useful for
microservices) or a full OS

QEMAg

< s,

& 7

Sy $\ S
&

M {
L o R
g.' v-E é‘ 7) %
A \+ ~
SN\ /78 “,
7 _«“ &
ST

:
A

Computer Science Lecture 6, page 3

4,1'76‘11

Use of Virtualization Today

e Data centers:

— server consolidation: pack multiple virtual servers onto a
smaller number of physical server

* saves hardware costs, power and cooling costs

* Cloud computing: rent virtual servers

— cloud provider controls physical machines and mapping of
virtual servers to physical hosts

— User gets root access on virtual server
* Desktop computing:

— Multi-platform software development

— Testing machines

B /‘ljy

S
Qo «<Ir’
>V C
S $\ oc,c

o — Run apps from another platform

2 5‘ 5 CompuTer' Science Lecture 6, page 4

5
ERST *

Case Study: PlanetLab

User-assigned Priviliged management
virtual machines virtual machines
R S
~ Y

- | | = | 1= I . = [=
(@] o o o o o [e] (] (] (]
Q Q Q o] Q Q Q Q o Q
(0] (0] (0] (0] (0] D (0] (0] (0] [0}
(2} w w w w 2] (2] w w w
w w w w wn w wn w w w

Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

Hardware

» Distributed cluster across universities

— Used for experimental research by students and faculty in
networking and distributed systems

e Uses a virtualized architecture

— Linux Vservers

— Node manager per machine
— Obtain a “slice” for an experiment: slice creation service

Lecture 6, page 5

OF M4 f
e 2
§ &
2 =k B
> k| Y El
= BNl
Z \-r N~
= ,_;\ I,
D % &
SRS S g

4]1176

Computer Science

Server Design Issues

Server machine

Client machine

2. Request

service Sarist
>
—

Client

Client machine

Server machine

Register

| end point

Client

‘,
—

end point Daemon

o ok

~~End-point

table

(a)

* Server Design

— Iterative versus concurrent

» How to locate an end-point (port #)?

— Well known port #

— Directory service (port mapper in Unix)

— Super server (inetd in Unix)

)
g

5
5/

g Computer Science

CS677: Distributed OS

2. Continue
/w/,' Actual Create
server server for
requested
Super- [service
1. Request server
service

(b)

Lecture 7, page 6

Stateful or Stateless?

» Stateful server
— Maintain state of connected clients
— Sessions 1n web servers

» Stateless server
— No state for clients

o Soft state

— Maintain state for a limited time; discarding state does not
Impact correctness

D, A) o
Z :% 5 Compu‘l'er' Science CS677: Distributed OS Lecture 7, page 7
s 4

Server Clusters

1
Logical switch : Application/compute servers | Distributed LogicaIIy a
(possibly multiple) | ! file/database ;
: | system single T,CP Response Server
i I connection
| | —
| - 5 |
Dispatched :
| ~ [J
Client requests I_ request 1 l P R Request
—_ > I !] equest L
e N «—F> . .
I ' , Client - » Switch | (handed off)
: | O []
| — []
i | <
D —
|
' |
First tier Second tier Third tier Server

* Web applications use tiered architecture

— Each tier may be optionally replicated; uses a dispatcher
— Use TCP splicing or handoffs

OF M4 f

& & ©®

4 5 D

[i > G

2 %’fﬁ) B
> %' o
]’l ‘.. 20

Computer Science CS677: Distributed OS Lecture 7, page §

i
\. % /)
|
25 48
ST o

Server Architecture

* Sequential
— Serve one request at a time

— Can service multiple requests by employing events and
asynchronous communication

* Concurrent
— Server spawns a process or thread to service each request
— Can also use a pre-spawned pool of threads/processes (apache)

* Thus servers could be
— Pure-sequential, event-based, thread-based, process-based

* Discussion: which architecture 1s most efficient?

4 B
& & ©®

MY
Y =5 A
‘L; iRl *E“ g/. ‘l"l‘
\+ 5
P L é’ “
% L
& SIS
RST *

oF
R
a5

Computer Science CS677: Distributed OS Lecture 7, page 9

Scalability

* Question.How can you scale the server capacity?
* Buy bigger machine!

* Replicate

 Distribute data and/or algorithms

 Ship code instead of data
* Cache

& 2§’ § Computer Science CS677: Distributed OS Lecture 7, page 10

Code and Process Migration

* Motivation

* How does migration occur?
* Resource migration

* Agent-based system

» Details of process migration

S o
D . S
2\ 53% 5 Compu'l'er' Science CS677: Distributed OS Lecture 7, page 11

4, lf]

Motivation

» Key reasons: performance and flexibility

* Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

* Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data
from server to client (e.g., databases)

— Improve parallelism — agent-based web searches

w |8 CompuTer Science CS677: Distributed OS Lecture 7, page 12
O, ST

Motivation

- Flexibility
— Dynamic configuration of distributed system

— Clients don’t need preinstalled software — download on
demand

2. Client and server

communicate

Client Server

/] I

/
1. Client fetches code
Service-specific

client-side code

Code repository

O

OF MAJIS;,
y L ©®
S = 2
ZHEN 3 =
Z *fi) B
=) % -
7 Q554 &5
ERST * g

'llly

Computer Science CS677: Distributed OS Lecture 7, page 13

Migration models

* Process = code seg + resource seg + execution seg

* Weak versus strong mobility
— Weak => transferred program starts from initial state

e Sender-initiated versus receiver-initiated

* Sender-1nitiated
— migration initiated by machine where code resides

 Client sending a query to database server
— Client should be pre-registered

* Recerver-initiated
— Migration initiated by machine that receives code

— Java applets
S, — Receiver can be anonymous
EZ a 53 Compufer Science CS677: Distributed OS Lecture 7, page 14

N4

Who executes migrated entity?

* Code migration:

— Execute 1n a separate process

— [Applets] Execute 1n target process
* Process migration

— Remote cloning
— Migrate the process

S o
D . S
2\ 53% 5 Compu'l'er' Science CS677: Distributed OS Lecture 7, page 15

4, lf]

Models for Code Migration

Execute at
Sender-initiated . target process
mobility . Execute in
- separate process
Weak mobility Execute at
Receiver-initiated .— target process
mobility . Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated / J g

mobility
T~ Clone process
Strong mobility

Migrate process
\ Receiver-initiated / g P

mobility
Clone process
N Tl % . : :
2 %% Compu'l'er' Science CS677: Distributed OS Lecture 7, page 16
7, % %G’

Do Resources Migrate?

* Depends on resource to process binding
— By 1dentifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments™
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
« Database, web sites
— Fixed resources
* Local devices, communication end points

¥

d 5.
Q <5
& e @

OF 1
SR\
7\ =
U
S

/ Compufer Science CS677: Distributed OS Lecture 7, page 17
O, % &5

ER

Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to-| BY identifier MV (or GR) GR (or MV) GR
resource | By value CP (or MV, GR) GR (or CP) GR
binding| By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

 Actions to be taken with respect to the references to local resources
when migrating code to another machine.

* GR: establish global system-wide reference

* MV: move the resources

* CP: copy the resource

« RB: rebind process to locally available resource

O 57

\;’\
S
@
A
>

\\‘ E Compufer Science CS677: Distributed OS Lecture 7, page 18
s

Migration in Heterogeneous Systems

« Systems can be heterogeneous (different architecture, OS)

— Support only weak mobility: recompile code, no run time information
— Strong mobility: recompile code segment, transfer execution segment

[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled
procedure call onto
migration stack

¥

Local stack
operations B

i

Procedure B

Call from Local
variables B

AtoB

Return addr.
from B

\ Parameter
Push procedure values for B
call onto program

stack

Local stack
operations A

Local
variables A

Return addr.

Procedure A
from A

Program
stack

|Computer Science CS677: Distributed OS

5
5/

@ 2

@
Y/
Ay

Local
variables B

Return label
(jump) to A

Parameter
values for B

Identification
for proc. B
Local
variables A

Return label
to caller A

Parameter
values for A

Identification

for proc. A

Migration
stack
(marshalled
data only)

Lecture 7, page 19

Virtual Machine Migration

* VMs can be migrates from one physical machine to
another

* Migration can be live - no application downtime
* Iterative copying of memory state
* How are network connections handled?

* Inherently migrates the OS and all its processes

¥ M4

Sﬁoé‘%@,

& Py : o

Z % g Computer Science CS677: Distributed OS Lecture 7, page 20
L™

Pre-Copy VM Migration

1. Enable dirty page tracking

2. Copy all memory pages to destination

3. Copy memory pages dirtied during the
previous copy again

* 4. Repeat 3rd step until the rest of memory pages
1s small.

* 5. Stop VM [l:E
« 6. Copy the rest of memory pages and

* non-memory VM states

<

7. Resume VM at destination l/ .

Machine A Machine B

Figures Courtesy: Isaku Yamahata, LinuxCon Japan 2012

a \J §Computer Science Lecture 6, page21

Post-Copy VM Migration

1. Stop VM

» 2. Copy non-memory VM states to destination

3. Resume VM at destination

* 4. Copy memory pages on-demand/background

— Async page fault can be utilized

& §h 9

S W B

a2 7 E i
Computer Science

Machte A

Copy memory pages
*On-demand(network fault)
*background(precache)

CS677: Distributed OS Lecture 7, page 22

VM Migration Time

Copy VM memory before switching the execution host

Round 2 \Round N \ stop

Precopy
Precopy Round 1 "

~ e
Performance degradation

Due to dirty page tracking

resume

Down time

Total migration time

time
stop resume
Postcopy
Postcopy Demand/pre paging(with async PF)
— _
Down time Performance degradation

Due to network fault

Figure Courtesy: Isaku Yamahata, LinuxCon Japan 2012

Total migration time
Copy VM memory after switching the execution host

: | i CompuTer' Science CS677: Distributed OS Lecture 7, page 23

Case Study: Viruses and Malware

* Viruses and malware are examples of mobile code
— Malicious code spreads from one machine to another
* Sender-1nitiated:
— proactive viruses that look for machines to infect
* Autonomous code
* Receiver-mitiated

— User (receiver) clicks on infected web URL or opens an
infected email attachment

y 02&\4& '/
D) o
7 :% 5 Compu‘l'er' Science CS677: Distributed OS Lecture 7, page 24

