
CS677: Distributed OSComputer Science Lecture 20, page

Today: Distributed File Systems

• Overview of stand-alone (UNIX) file systems

• Issues in distributed file systems

• Next two classes: case studies of distributed file systems
• NFS
• Coda
• xFS
• Log-structured file systems (time permitting)
• HDFS; object storage systems

1

CS677: Distributed OSComputer Science Lecture 20, page

File System Basics

• File: named collection of logically related data
– Unix file: an uninterpreted sequence of bytes

• File system:
– Provides a logical view of data and storage functions
– User-friendly interface
– Provides facility to create, modify, organize, and delete files
– Provides sharing among users in a controlled manner
– Provides protection

2

CS677: Distributed OSComputer Science Lecture 20, page

Unix File System Review
• User file: linear array of bytes. No records, no file types
• Directory: special file not directly writable by user
• File structure: directed acyclic graph [directories may not be

shared, files may be shared (why?)]
• Directory entry for each file

– File name
– inode number
– Major device number
– Minor device number

• All inodes are stored at a special location on disk [super block]
– Inodes store file attributes and a multi-level index that has a list of disk

block locations for the file

3

CS677: Distributed OSComputer Science Lecture 20, page

Inode Structure

• Fields
– Mode
– Owner_ID, group_id
– Dir_file
– Protection bits
– Last access time, last write time, last inode time
– Size, no of blocks
– Ref_cnt
– Address[0], … address[14]

• Multi-level index: 12 direct blocks, one single, double, and
triple indirect blocks

4

CS677: Distributed OSComputer Science Lecture 20, page

Distributed File Systems

• File service: specification of what the file system offers
– Client primitives, application programming interface (API)

• File server: process that implements file service
– Can have several servers on one machine (UNIX, DOS,…)

• Components of interest
– File service
– Directory service

5

CS677: Distributed OSComputer Science Lecture 20, page

File Service

• Remote access model
– Work done at the server

• Stateful server (e.g., databases)
• Consistent sharing (+)
• Server may be a bottleneck (-)
• Need for communication (-)

•Upload/download mode
– Work done at the client

•Stateless server
•Simple functionality (+)
•Moves files/blocks, need storage (-)

6

CS677: Distributed OSComputer Science Lecture 20, page

System Structure: Server Type

• Stateless server
– No information is kept at server between client requests
– All information needed to service a requests must be provided

by the client with each request (what info?)
– More tolerant to server crashes

• Stateful server
– Server maintains information about client accesses
– Shorted request messages
– Better performance
– Idempotency easier
– Consistency is easier to achieve

7

CS677: Distributed OSComputer Science Lecture 20, page

NFS Architecture
• Sun’s Network File System (NFS) – widely used distributed file system
• Uses the virtual file system layer to handle local and remote files

8

CS677: Distributed OSComputer Science Lecture 20, page

NFS Operations
Operation v3 v4 Description

Create Yes No Create a regular file

Create No Yes Create a nonregular file

Link Yes Yes Create a hard link to a file

Symlink Yes No Create a symbolic link to a file

Mkdir Yes No Create a subdirectory in a given directory

Mknod Yes No Create a special file

Rename Yes Yes Change the name of a file

Rmdir Yes No Remove an empty subdirectory from a directory

Open No Yes Open a file

Close No Yes Close a file

Lookup Yes Yes Look up a file by means of a file name

Readdir Yes Yes Read the entries in a directory

Readlink Yes Yes Read the path name stored in a symbolic link

Getattr Yes Yes Read the attribute values for a file

Setattr Yes Yes Set one or more attribute values for a file

Read Yes Yes Read the data contained in a file

Write Yes Yes Write data to a file

9

CS677: Distributed OSComputer Science Lecture 20, page

Communication

a) Reading data from a file in NFS version 3.
b) Reading data using a compound procedure in version 4.
 Both versions use Open Network Computing (ONC) RPCs
 - One RPC per operation (NFS v3); multiple operations supported in v4.

10

CS677: Distributed OSComputer Science Lecture 20, page

Naming: Mount Protocol
• NFS uses the mount protocol to access remote files

– Mount protocol establishes a local name for remote files
– Users access remote files using local names; OS takes care of the mapping

11

CS677: Distributed OSComputer Science Lecture 20, page

Naming: Crossing Mount Points
• Mounting nested directories from multiple servers
• NFS v3 does not support transitive exports (for security reasons)

– NFS v4 allows clients to detects crossing of mount points, supports recursive lookups

12

CS677: Distributed OSComputer Science Lecture 20, page

Automounting

• Automounting: mount on demand

13

CS677: Distributed OSComputer Science Lecture 20, page

File Attributes (1)

• Some general mandatory file attributes in NFS.
– NFS modeled based on Unix-like file systems

• Implementing NFS on other file systems (Windows) difficult
– NFS v4 enhances compatibility by using mandatory and recommended attributes

Attribute Description

TYPE The type of the file (regular, directory, symbolic link)

SIZE The length of the file in bytes

CHANGE Indicator for a client to see if and/or when the file has changed

FSID Server-unique identifier of the file's file system

14

CS677: Distributed OSComputer Science Lecture 20, page

File Attributes (2)

• Some general recommended file attributes.

Attribute Description
ACL an access control list associated with the file

FILEHANDLE The server-provided file handle of this file

FILEID A file-system unique identifier for this file

FS_LOCATIONS Locations in the network where this file system may be found

OWNER The character-string name of the file's owner

TIME_ACCESS Time when the file data were last accessed

TIME_MODIFY Time when the file data were last modified

TIME_CREATE Time when the file was created

15

CS677: Distributed OSComputer Science Lecture 20, page

Semantics of File Sharing
a) On a single processor, when a read

follows a write, the value returned by the
read is the value just written.

b) In a distributed system with caching,
obsolete values may be returned.

16

CS677: Distributed OSComputer Science Lecture 20, page

Semantics of File Sharing

• Four ways of dealing with the shared files in a distributed system.
– NFS implements session semantics

• Can use remote/access model for providing UNIX semantics (expensive)
• Most implementations use local caches for performance and provide session semantics

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

17

CS677: Distributed OSComputer Science Lecture 20, page

File Locking in NFS

• NFS supports file locking
• Applications can use locks to ensure consistency
• Locking was not part of NFS until version 3
• NFS v4 supports locking as part of the protocol (see above table)

Operation Description

Lock Creates a lock for a range of bytes (non-blocking_

Lockt Test whether a conflicting lock has been granted

Locku Remove a lock from a range of bytes

Renew Renew the lease on a specified lock

18

CS677: Distributed OSComputer Science Lecture 20, page

File Locking: Share Reservations

• The result of an open operation with share reservations in NFS.
a) When the client requests shared access given the current denial state.
b) When the client requests a denial state given the current file access state.

 Current file denial state

NONE READ WRITE BOTH
READ Succeed Fail Succeed Fail

WRITE Succeed Succeed Fail Fail

BOTH Succeed Fail Fail Fail

(a) 

 Requested file denial state
NONE READ WRITE BOTH

READ Succeed Fail Succeed Fail

WRITE Succeed Succeed Fail Fail

BOTH Succeed Fail Fail Fail

(b)

Request 
access

Current 
access 
state

19

CS677: Distributed OSComputer Science Lecture 20, page

Client Caching

• Client-side caching is left to the implementation (NFS does not prohibit it)
– Different implementation use different caching policies

• Sun: allow cache data to be stale for up to 30 seconds

20

CS677: Distributed OSComputer Science Lecture 20, page

Client Caching: Delegation

• NFS V4 supports open delegation
– Server delegates local open and close requests to the NFS client
– Uses a callback mechanism to recall file delegation.

21

CS677: Distributed OSComputer Science Lecture 20, page

RPC Failures

• Three situations for handling retransmissions: use a duplicate request cache
a) The request is still in progress
b) The reply has just been returned
c) The reply has been some time ago, but was lost.
 Use a duplicate-request cache: transaction Ids on RPCs, results cached

22

CS677: Distributed OSComputer Science Lecture 20, page

Security
• The NFS security architecture.

– Simplest case: user ID, group ID authentication only

23

CS677: Distributed OSComputer Science Lecture 20, page

Secure RPCs

• Secure RPC in NFS version 4.
24

CS677: Distributed OSComputer Science Lecture 20, page

Replica Servers

• NFS ver 4 supports replications

• Entire file systems must be replicated

• FS_LOCATION attribute for each file

• Replicated servers: implementation specific

25

