OS Virtualization

 Emulate OS-level interface with native interface

« “Lightweight” virtual machines
— No hypervisor, OS provides necessary support

Solarls 10 - global zone

Container 1 Container 2 Container 3
Applications Applications Applications -
{ J L
Host OS Kernel with virtualization layer I I I I

Hardware Disk pc|e Memory
Hardware 4

Referred to as containers
— Solaris containers, BSD jails, Linux containers

g Computer Science Lecture 4, page31

Linux Containers (LXC)

Containers share OS kernel of the host
— OS provides resource isolation

Benefits
— Fast provisioning, bare-metal like performance, lightweight

App || App App || App

App || App

5 H.

"Realizing Linux Containers”
by Boden Russell, IBM

Type 1 Hypervisor Type 2 Hypervisor Linux Containers
Computer Science Lecture 4, page32

OS Mechanisms for LXC

* OS mechanisms for resource isolation and
management

* namespaces: process-based resource isolation
» Cgroups: limits, prioritization, accounting, control
 chroot: apparent root directory

» Linux security module, access control
» Tools (e.g., docker) for easy management

5 Computer Science Lecture 4, page33

Linux Namespaces

* Namespace: restrict what can a container see?
— Provide process level isolation of global resources

* Processes have illusion they are the only processes in
the system

« MNT: mount points, file systems (what files, dir are
visible)?

» PID: what other processes are visib

* NET: NICs, routing

« Users: what uid, gid are visible?

-, ° chroot: change root directory

Computer Science Lecture 4, page34

Linux cgroups

* Resource isolation
— what and how much can a container use?

 Set upper bounds (limits) on resources that can be used
* Fair sharing of certain resources

« Examples:
— cpu: weighted proportional share of CPU for a group

— cpuset: cores that a group can access
— block 10: weighted proportional block IO access
— memory: max memory limit for a group

Without CPU Core Pinning With CPU Core Pinning

LLLLLLLLLL

http-bxe http-bxe (core 0)

u mysqlbxc 8 mysqlbc (core 1-3)

and access

8 hadoop-ixc B hadoop-ixc (core 4-11)

¥ rabbit-xc ® rabbit-c (core 12-15)

(¥ Jcomputer Science Lecture 4, page35

Proportional Share Scheduling

— Uses a variant of proportional-share scheduling

* Share-based scheduling:
— Assign each process a weight w 1 (a “share”)
— Allocation is in proportional to share
— fairness: reused unused cycles to others in proportion to weight
— Examples: fair queuing, start time fair queuing
* Hard limits: assign upper bounds (e.g., 30%), no
reallocation
* Credit-based: allocate credits every time T, can
accumulate credits, and can burst up-to credit limit
— can a process starve other processes?

FComputer Science Lecture 4, page36

Share-based Schedulers

From paolo <>
Subject [PATCH RFC RESEND 00/14] New version of the BFQ I/O Scheduler
Date Tue, 27 May 2014 14:42:24 +0200

From: Paolo Valente <paolo.valente@unimore.it>
[Re-posting, previous attempt seems to have partially failed]

Hi,

this patchset introduces the last version of BFQ, a proportional-share
storage-I/0 scheduler. BFQ also supports hierarchical scheduling with
a cgroups interface. The first version of BFQ was submitted a few

emanam~ A~ P13 T 1a Amcarad am oA e Lha matakan da Alarlacseiak i

[PATCH RFC 00/22] Replace the CFQ 1/0O Scheduler with BFQ

From: Paolo Valente
Date: Mon Feb 01 2016 - 17:50:39 EST

o Next messase: Panlo Valente: "[PATCH RFC 03/221 black . cfa: remove deen seek anenes lagic"
T2 instances’ baseline performance and ability to burst are governed by CPU Credits. Each T2 instance receives CPU Credits

continuously, the rate of which depends on the instance size. T2 instances accrue CPU Credits when they are idle, and use CPU credits
when they are active. A CPU Credit provides the performance of a full CPU core for one minute.

g Computer Science Lecture 4, page37

Putting it all together

« Images: files/data for a container
— can run different distributions/apps on a host

 Linux security modules and access control
» Linux capabilities: per process privileges

LSM Confinment

USER NS (*

Lecture 4, page3g

Docker and Linux Containers

* Linux containers are a set of kernel features

— Need user space tools to manage containers
— Virtuoze, OpenVZm, VServer,Lxc-tools, Wardenm Docker

What does Docker add to Linux containers?
— Portable container deployment across machines
— Application-centric: geared for app deployment
— Automatic builds: create containers from build files
— Component re-use

Docker containers are self-contained: no
dependencies

5 Computer Science Lecture 4, page39

Docker

Docker uses Linux containers

CLl RESL API Dockerfiles

&%’J

BICE container

Virtual Machine | Virtual Machine Container o
s

Type 1 Hypervisor Linux Containers docker

Computer Science Lecture 4, page4(

LXC Virtualization Using Docker

» Portable: docker images run anywhere docker runs

» Docker decouples LXC provider from operations
— uses virtual resources (LXC virtualization)

* fair share of physical NIC vs use virtual NICs that are fair-
shared

Non-Virtual Virtual

Computer Science Lecture 4, page4|

Docker Images and Use

* Docker uses a union file system (AuFS)
— allows containers to use host FS safely

» Essentially a copy-on-write file system
—read-only files shared (e.g., share glibc)
—make a copy upon write

* Allows for small efficient container images

* Docker Use Cases
— “Run once, deploy anywhere”
— Images can be pulled/pushed to repository

— Containers can be a single process (useful for
microservices) or a full OS

Computer Science Lecture 4, page42

Use of Virtualization Today

* Data centers:
— server consolidation: pack multiple virtual servers onto a

smaller number of physical server
* saves hardware costs, power and cooling costs

* Cloud computing: rent virtual servers
— cloud provider controls physical machines and mapping of

virtual servers to physical hosts
— User gets root access on virtual server
* Desktop computing:
— Multi-platform software development

— Testing machines
— Run apps from another platform

Lecture 4, page43

¥ § Computer Science

Case Study: PlanetLab

Priviliged management

User-assigned
virtual machines

virtual machines

$59001d
$58001d
$59901d
$59001d
$59001d
$59901d
$59001d
$59901d
$59001d
$59001d

Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

Hardware

 Distributed cluster across universities
— Used for experimental research by students and faculty in
networking and distributed systems

* Uses a virtualized architecture

— Linux Vservers

— Node manager per machine
— Obtain a “slice” for an experiment: slice creation service

Computer Science Lecture 4, page44

Server Design Issues

Server machine

Client machine)) Server machine
2 Rquest Register Client machine 5 Bsriiiiie
_ | sevie P Server [end point | service i Adual | Create
Client |« Client |l server server for
\\ N requested
& \ = service
b Super-
1. Ask for 8\ End-go] 1. Request ser?/er
end point | |Daemon \tart])k;pomt service

(a) (b)

* Server Design

— TIterative versus concurrent

« How to locate an end-point (port #)?
— Well known port #
— Directory service (port mapper in Unix)
— Super server (inetd in Unix)

E Compu-rer- Science CS677: Distributed OS Lecture 7, page 2

Stateful or Stateless?

o Stateful server
— Maintain state of connected clients
— Sessions 1n web servers

» Stateless server
— No state for clients

» Soft state

— Maintain state for a limited time; discarding state does not
impact correctness

€ : fé Computer Science CS677: Distributed OS Lecture 7, page 3

|
Logical switch ! Application/compute servers i Distributed Loglcally a

(possibly multiple) |

Server Clusters

Dispat
Client requests I_ request
U]

|
|
I
tched |
|
|
‘:,
|
)
|

system

Server

: file/database Single TCP Response
| connection

—
: L]
: @ Client Request » (handed off) :

Switch

Request

Server

* Web applications use tiered architecture

— Each tier may be optionally replicated; uses a dispatcher
— Use TCP splicing or handoffs

% OF Mg
g
& & @
5 S @
\\+ E
N\ &
O, % £
D, S5 L
LRt -

j Computer Science

CS677: Distributed OS

Lecture 7, page 4

Server Architecture

* Sequential
— Serve one request at a time

— Can service multiple requests by employing events and
asynchronous communication

* Concurrent
— Server spawns a process or thread to service each request
— Can also use a pre-spawned pool of threads/processes (apache)

* Thus servers could be
— Pure-sequential, event-based, thread-based, process-based

* Discussion: which architecture 1s most efficient?

f ’ E Compu'rer' Science CS677: Distributed OS Lecture 7, page 5

Scalability

* Question.How can you scale the server capacity?
* Buy bigger machine!

* Replicate

 Distribute data and/or algorithms

 Ship code instead of data
» Cache

2) Compu-rer- Science CS677: Distributed OS Lecture 7, page 6

