
Computer Science Lecture 4, page CS677: Distributed OS

Multiprocessor Scheduling

•Will consider only shared memory multiprocessor or multi-core CPU

•Salient features: One or more caches: cache affinity is important
– Semaphores/locks typically implemented as spin-locks: preemption during

critical sections
•Multi-core systems: some caches shared (L2,L3); others are not

1

Computer Science Lecture 4, page CS677: Distributed OS

Multiprocessor Scheduling

•Central queue – queue can be a bottleneck

•Distributed queue – load balancing between queue

2

Computer Science Lecture 4, page CS677: Distributed OS

Multiprocessor Scheduling

• Common mechanisms combine central queue with per
processor queue (SGI IRIX)

• Exploit cache affinity – try to schedule on the same
processor that a process/thread executed last

• Context switch overhead
– Quantum sizes larger on multiprocessors than uniprocessors

3

Computer Science Lecture 4, page CS677: Distributed OS

Parallel Applications on SMPs

• Gang scheduling: schedule parallel app at once
• Effect of spin-locks: what happens if preemption occurs

in the middle of a critical section?
– Preempt entire application (co-scheduling)
– Raise priority so preemption does not occur (smart scheduling)
– Both of the above

• Provide applications with more control over its
scheduling
– Users should not have to check if it is safe to make certain

system calls
– If one thread blocks, others must be able to run

4

Computer Science Lecture 4, page CS677: Distributed OS

Distributed Scheduling: Motivation

• Distributed system with N workstations
– Model each w/s as identical, independent M/M/1 systems
– Utilization u, P(system idle)=1-u

• What is the probability that at least one system is idle
and one job is waiting?

5

Computer Science Lecture 4, page CS677: Distributed OS

Implications

• Probability high for moderate system utilization
– Potential for performance improvement via load distribution

• High utilization => little benefit
• Low utilization => rarely job waiting
• Distributed scheduling (aka load balancing) potentially useful
• What is the performance metric?

– Mean response time
• What is the measure of load?

– Must be easy to measure
– Must reflect performance improvement

6

Computer Science Lecture 4, page CS677: Distributed OS

Design Issues

• Measure of load
– Queue lengths at CPU, CPU utilization

• Types of policies
– Static: decisions hardwired into system
– Dynamic: uses load information
– Adaptive: policy varies according to load

• Preemptive versus non-preemptive
• Centralized versus decentralized
• Stability: λ>µ => instability, λ1+λ2<µ1+µ2=>load balance

– Job floats around and load oscillates

7

Computer Science Lecture 4, page CS677: Distributed OS

Components

• Transfer policy: when to transfer a process?
– Threshold-based policies are common and easy

• Selection policy: which process to transfer?� �
– Prefer new processes
– Transfer cost should be small compared to execution cost

• Select processes with long execution times
• Location policy: where to transfer the process?

– Polling, random, nearest neighbor
• Information policy: when and from where?

– Demand driven [only if sender/receiver], time-driven
[periodic], state-change-driven [send update if load changes]

8

Computer Science Lecture 4, page CS677: Distributed OS

Sender-initiated Policy

• Transfer policy

• Selection policy: newly arrived process
• Location policy: three variations

– Random: may generate lots of transfers => limit max transfers
– Threshold: probe n nodes sequentially

• Transfer to first node below threshold, if none, keep job
– Shortest: poll Np nodes in parallel

• Choose least loaded node below T

9

Computer Science Lecture 4, page CS677: Distributed OS

Receiver-initiated Policy

• Transfer policy: If departing process causes load < T,
find a process from elsewhere

• Selection policy: newly arrived or partially executed
process

• Location policy:
– Threshold: probe up to Np other nodes sequentially

• Transfer from first one above threshold, if none, do nothing
– Shortest: poll n nodes in parallel, choose node with heaviest

load above T

10

Computer Science Lecture 4, page CS677: Distributed OS

Symmetric Policies
• Nodes act as both senders and receivers: combine

previous two policies without change
– Use average load as threshold

• Improved symmetric policy: exploit polling information
– Two thresholds: LT, UT, LT <= UT
– Maintain sender, receiver and OK nodes using polling info
– Sender: poll first node on receiver list …
– Receiver: poll first node on sender list …

11

Computer Science Lecture 4, page CS677: Distributed OS

Case Study 1 : V-System (Stanford)

• State-change driven information policy
– Significant change in CPU/memory utilization is broadcast to

all other nodes
• M least loaded nodes are receivers, others are senders
• Sender-initiated with new job selection policy
• Location policy: probe random receiver, if still receiver,

transfer job, else try another

12

Computer Science Lecture 4, page CS677: Distributed OS

Case study 2: Sprite (Berkeley)

• Workstation environment => owner is king!
• Centralized information policy: coordinator keeps info

– State-change driven information policy
– Receiver: workstation with no keyboard/mouse activity for 30

seconds and # active processes < number of processors
• Selection policy: manually done by user => workstation

becomes sender
• Location policy: sender queries coordinator
• WS with foreign process becomes sender if user

becomes active: selection policy=> home workstation

13

Computer Science Lecture 4, page CS677: Distributed OS

Sprite (contd)

• Sprite process migration
– Facilitated by the Sprite file system
– State transfer

• Swap everything out
• Send page tables and file descriptors to receiver
• Demand page process in
• Only dependencies are communication-related

– Redirect communication from home WS to receiver

14

Computer Science Lecture 4, page

Case Study 3 : Volunteer Computing

• Internet scale operating system (ISOS)
– Harness compute cycles of thousands of PCs on the Internet
– PCs owned by different individuals
– Donate CPU cycles/storage when not in use (pool resouces)
– Contact coordinator for work
– Coordinator: partition large parallel app into small tasks
– Assign compute/storage tasks to PCs

• Examples: Seti@home, BOINC, P2P backups
– Volunteer computing

15

Computer Science Lecture 4, page

Case study 4 : Condor

• Condor: use idle cycles on workstations in a LAN
• Used to run large batch jobs, long simulations
• Idle machines contact condor for work
• Condor assigns a waiting job
• User returns to workstation => suspend job, migrate

– supports process migration
• Flexible job scheduling policies

• Sun Grid Engine: similar features as Condor
– Evolved into cluster batch schedulers (SGE, DQS…)

16

Computer Science Lecture 4, page CS677: Distributed OS

Virtualization

• Virtualization: extend or replace an existing interface to
mimic the behavior of another system.
– Introduced in 1970s: run legacy software on newer mainframe

hardware
• Handle platform diversity by running apps in VMs

– Portability and flexibility

17

Computer Science Lecture 4, page CS677: Distributed OS

Types of Interfaces

• Different types of interfaces
– Assembly instructions
– System calls
– APIs

• Depending on what is replaced /mimiced, we obtain
different forms of virtualization

18

Computer Science Lecture 4, page CS677: Distributed OS

Types of Virtualization

• Emulation
– VM emulates/simulates complete hardware
– Unmodified guest OS for a different PC can be run

• Bochs, VirtualPC for Mac, QEMU
• Full/native Virtualization

– VM simulates “enough” hardware to allow an unmodified
guest OS to be run in isolation

• Same hardware CPU
– IBM VM family, VMWare Workstation, Parallels, VirtualBox

19

Computer Science Lecture 4, page CS677: Distributed OS

Types of virtualization
• Para-virtualization

– VM does not simulate hardware
– Use special API that a modified guest OS must use
– Hypercalls trapped by the Hypervisor and serviced
– Xen, VMWare ESX Server

• OS-level virtualization
– OS allows multiple secure virtual servers to be run
– Guest OS is the same as the host OS, but appears isolated

• apps see an isolated OS
– Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker

• Application level virtualization
– Application is gives its own copy of components that are not shared

• (E.g., own registry files, global objects) - VE prevents conflicts
– JVM, Rosetta on Mac (also emulation), WINE

20

Computer Science Lecture 4, page CS677: Distributed OS

Types of Hypervisors

• Type 1: hypervisor runs on “bare metal”
• Type 2: hypervisor runs on a host OS

– Guest OS runs inside hypervisor
• Both VM types act like real hardware

21

Computer Science Lecture 4, page CS677: Distributed OS

How Virtualization works?

• CPU supports kernel and user mode (ring0, ring3)
– Set of instructions that can only be executed in kernel mode

• I/O, change MMU settings etc -- sensitive instructions
– Privileged instructions: cause a trap when executed in kernel mode

• Result: type 1 virtualization feasible if sensitive instruction subset
of privileged instructions

• Intel 386: ignores sensitive instructions in user mode
– Can not support type 1 virtualization

• Recent Intel/AMD CPUs have hardware support
– Intel VT, AMD SVM

• Create containers where a VM and guest can run
• Hypervisor uses hardware bitmap to specify which inst should trap
• Sensitive inst in guest traps to hypervisor

22

Computer Science Lecture 4, page CS677: Distributed OS

Type 1 hypervisor

• Unmodified OS is running in user mode (or ring 1)
– But it thinks it is running in kernel mode (virtual kernel mode)
– privileged instructions trap; sensitive inst-> use VT to trap
– Hypervisor is the “real kernel”

• Upon trap, executes privileged operations
• Or emulates what the hardware would do

23

Computer Science Lecture 4, page CS677: Distributed OS

Type 2 Hypervisor

• VMWare example
– Upon loading program: scans code for basic blocks
– If sensitive instructions, replace by Vmware procedure

• Binary translation
– Cache modified basic block in VMWare cache

• Execute; load next basic block etc.
• Type 2 hypervisors work without VT support

– Sensitive instructions replaced by procedures that emulate
them.

24

Computer Science Lecture 4, page CS677: Distributed OS

Paravirtualization

• Both type 1 and 2 hypervisors work on unmodified OS
• Paravirtualization: modify OS kernel to replace all

sensitive instructions with hypercalls
– OS behaves like a user program making system calls
– Hypervisor executes the privileged operation invoked by

hypercall.

25

Computer Science Lecture 4, page CS677: Distributed OS

Virtual machine Interface

• Standardize the VM interface so kernel can run on bare
hardware or any hypervisor

26

Computer Science Lecture 4, page CS677: Distributed OS

Memory virtualization

• OS manages page tables
– Create new pagetable is sensitive -> traps to hypervisor

• hypervisor manages multiple OS
– Need a second shadow page table
– OS: VM virtual pages to VM’s physical pages
– Hypervisor maps to actual page in shadow page table
– Two level mapping
– Need to catch changes to page table (not privileged)

• Change PT to read-only - page fault
• Paravirtualized - use hypercalls to inform

27

Computer Science Lecture 4, page

I/O Virtualization

• Each guest OS thinks it “owns” the disk
• Hypervisor creates “virtual disks”

– Large empty files on the physical disk that appear as “disks” to
the guest OS

• Hypervisor converts block # to file offset for I/O
– DMA need physical addresses

• Hypervisor needs to translate

CS677: Distributed OS 28

Computer Science Lecture 4, page CS677: Distributed OS

Examples

• Application-level virtualization: “process virtual
machine”

• VMM /hypervisor

29

Computer Science Lecture 4, page

Virtual Appliances & Multi-Core

• Virtual appliance: pre-configured VM with OS/ apps
pre-installed
– Just download and run (no need to install/comfigure)
– Software distribution using appliances

• Multi-core CPUs
– Run multiple VMs on multi-core systems
– Each VM assigned one or more vCPU
– Mapping from vCPUs to physical CPUs

CS677: Distributed OS 30

Computer Science Lecture 4, page

Use of Virtualization Today

• Data centers:
– server consolidation: pack multiple virtual servers onto a

smaller number of physical server
• saves hardware costs, power and cooling costs

• Cloud computing: rent virtual servers
– cloud provider controls physical machines and mapping of

virtual servers to physical hosts
– User gets root access on virtual server

• Desktop computing:
– Multi-platform software development
– Testing machines
– Run apps from another platform

31

Computer Science Lecture 4, page

Case Study: PlanetLab

• Distributed cluster across universities
– Used for experimental research by students and faculty in

networking and distributed systems
• Uses a virtualized architecture

– Linux Vservers
– Node manager per machine
– Obtain a “slice” for an experiment: slice creation service

32

