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Multiprocessor Scheduling

•Will consider only shared memory multiprocessor or multi-core CPU 

•Salient features: One or more caches: cache affinity is important 
– Semaphores/locks typically implemented as spin-locks: preemption during 

critical sections 
•Multi-core systems: some caches shared (L2,L3); others are not
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Multiprocessor Scheduling

•Central queue – queue can be a bottleneck 

•Distributed queue – load balancing between queue
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Multiprocessor Scheduling

• Common mechanisms combine central queue with per 
processor queue (SGI IRIX) 

• Exploit cache affinity – try to schedule on the same 
processor that a process/thread executed last 

• Context switch overhead 
– Quantum sizes larger on multiprocessors than uniprocessors
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Parallel Applications on SMPs

• Gang scheduling: schedule parallel app at once 
• Effect of spin-locks: what happens if preemption occurs 

in the middle of a critical section? 
– Preempt entire application (co-scheduling) 
– Raise priority so preemption does not occur (smart scheduling) 
– Both of the above 

• Provide applications with more control over its 
scheduling 
– Users should not have to check if it is safe to make certain 

system calls 
– If one thread blocks, others must be able to run
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Distributed Scheduling: Motivation

• Distributed system with N workstations 
– Model each w/s as identical, independent M/M/1 systems 
– Utilization u, P(system idle)=1-u 

• What is the probability that at least one system is idle 
and one job is waiting?
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Implications

• Probability high for moderate system utilization 
– Potential for performance improvement via load distribution 

• High utilization => little benefit 
• Low utilization => rarely job waiting 
• Distributed scheduling (aka load balancing) potentially useful 
• What is the performance metric? 

– Mean response time 
• What is the measure of load? 

– Must be easy to measure 
– Must reflect performance improvement
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Design Issues

• Measure of load 
– Queue lengths at CPU, CPU utilization 

• Types of policies 
– Static: decisions hardwired into system 
– Dynamic: uses load information 
– Adaptive: policy varies according to load 

• Preemptive versus non-preemptive 
• Centralized versus decentralized 
• Stability: λ>µ => instability, λ1+λ2<µ1+µ2=>load balance 

– Job floats around and load oscillates
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Components

• Transfer policy: when to transfer a process? 
– Threshold-based policies are common and easy 

• Selection policy: which process to transfer?� �
– Prefer new processes 
– Transfer cost should be small compared to execution cost 

• Select processes with long execution times 
• Location policy: where to transfer the process? 

– Polling, random, nearest neighbor 
• Information policy: when and from where? 

– Demand driven [only if sender/receiver], time-driven 
[periodic], state-change-driven [send update if load changes]
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Sender-initiated Policy

• Transfer policy 

• Selection policy: newly arrived process 
• Location policy: three variations 

– Random: may generate lots of transfers => limit max transfers 
– Threshold: probe n nodes sequentially 

• Transfer to first node below threshold, if none, keep job 
– Shortest: poll Np nodes in parallel 

• Choose least loaded node below T
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Receiver-initiated Policy

• Transfer policy: If departing process causes load < T, 
find a process from elsewhere 

• Selection policy: newly arrived or partially executed 
process 

• Location policy: 
– Threshold: probe up to Np other nodes sequentially 

• Transfer from first one above threshold, if none, do nothing 
– Shortest: poll n nodes in parallel, choose node with heaviest 

load above T
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Symmetric Policies
• Nodes act as both senders and receivers: combine 

previous two policies without change 
– Use average load as threshold 

• Improved symmetric policy: exploit polling information 
– Two thresholds: LT, UT, LT <= UT 
– Maintain sender, receiver and OK nodes using polling info 
– Sender: poll first node on receiver list … 
– Receiver: poll first node on sender list …
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Case Study 1 : V-System (Stanford)

• State-change driven information policy 
– Significant change in CPU/memory utilization is broadcast to 

all other nodes 
• M least loaded nodes are receivers, others are senders 
• Sender-initiated with new job selection policy 
• Location policy: probe random receiver, if still receiver, 

transfer job, else try another
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Case study 2: Sprite (Berkeley)

• Workstation environment => owner is king! 
• Centralized information policy: coordinator keeps info 

– State-change driven information policy 
– Receiver: workstation with no keyboard/mouse activity for 30 

seconds and # active processes < number of processors 
• Selection policy: manually done by user => workstation 

becomes sender 
• Location policy: sender queries coordinator 
• WS with foreign process becomes sender if user 

becomes active: selection policy=> home workstation
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Sprite (contd)

• Sprite process migration 
– Facilitated by the Sprite file system 
– State transfer 

• Swap everything out 
• Send page tables and file descriptors to receiver 
• Demand page process in 
• Only dependencies are communication-related 

– Redirect communication from home WS to receiver
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Case Study 3 : Volunteer Computing

• Internet scale operating system (ISOS)  
– Harness compute cycles of thousands of PCs on the Internet 
– PCs owned by different individuals 
– Donate CPU cycles/storage when not in use (pool resouces) 
– Contact coordinator for work 
– Coordinator: partition large parallel app into small tasks 
– Assign compute/storage tasks to PCs  

• Examples: Seti@home, BOINC, P2P backups 
– Volunteer computing
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Case study 4 : Condor

• Condor: use idle cycles on workstations in a LAN 
• Used to run large batch jobs, long simulations 
• Idle machines contact condor for work 
• Condor assigns a waiting job 
• User returns to workstation => suspend job, migrate 

– supports process migration 
• Flexible job scheduling policies 

• Sun Grid Engine: similar features as Condor 
– Evolved into cluster batch schedulers  (SGE, DQS…)
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Virtualization

• Virtualization: extend or replace an existing interface to 
mimic the behavior of another system. 
– Introduced in 1970s: run legacy software on newer mainframe 

hardware 
• Handle platform diversity by running apps in VMs 

– Portability and flexibility 
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Types of Interfaces

• Different types of interfaces 
– Assembly instructions 
– System calls 
– APIs 

• Depending on what is replaced /mimiced, we obtain 
different forms of virtualization
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Types of Virtualization

• Emulation 
– VM emulates/simulates complete hardware 
– Unmodified guest OS for a different PC can be run 

• Bochs, VirtualPC for Mac, QEMU 
• Full/native Virtualization 

– VM simulates “enough” hardware to allow an unmodified 
guest OS to be run in isolation 

• Same hardware CPU 
– IBM VM family, VMWare Workstation, Parallels, VirtualBox
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Types of virtualization
• Para-virtualization 

– VM does not simulate hardware  
– Use special API that a modified guest OS must use 
– Hypercalls trapped by the Hypervisor and serviced 
– Xen, VMWare  ESX Server 

• OS-level virtualization 
– OS allows multiple secure virtual servers to be run 
– Guest OS is the same as the host OS, but appears isolated 

•  apps see an isolated OS 
– Solaris Containers, BSD Jails, Linux Vserver, Linux containers, Docker 

• Application level virtualization 
– Application is gives its own copy of components that are not shared 

• (E.g., own registry files, global objects) - VE prevents conflicts 
– JVM, Rosetta on Mac (also emulation), WINE
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Types of Hypervisors

• Type 1: hypervisor runs on “bare metal” 
• Type 2:  hypervisor runs on a host OS 

– Guest OS runs inside hypervisor 
• Both VM types act like real hardware
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How Virtualization works?

• CPU supports kernel and user mode  (ring0, ring3) 
– Set of instructions that can only be executed in kernel mode 

• I/O, change MMU settings etc -- sensitive instructions 
– Privileged instructions:  cause a trap when executed in kernel mode  

• Result: type 1 virtualization feasible if sensitive instruction subset 
of privileged instructions 

• Intel 386: ignores sensitive instructions in user mode 
– Can not support type 1 virtualization 

• Recent Intel/AMD CPUs have hardware support 
– Intel VT, AMD  SVM 

• Create containers where a VM and guest can run 
• Hypervisor uses hardware bitmap to specify which inst should trap 
• Sensitive inst in guest traps to hypervisor 
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Type 1 hypervisor

• Unmodified OS is running in user mode (or ring 1)  
– But it thinks it is running in kernel mode (virtual kernel mode) 
– privileged instructions trap; sensitive inst-> use VT to trap 
– Hypervisor is the “real kernel”  

• Upon trap, executes privileged operations 
• Or emulates what the hardware would do
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Type 2 Hypervisor

• VMWare example 
– Upon loading program: scans code for basic blocks 
– If sensitive instructions, replace by Vmware procedure 

• Binary translation 
– Cache modified basic block in VMWare cache 

• Execute; load next basic block etc. 
• Type 2 hypervisors work without VT support 

– Sensitive instructions replaced by procedures that emulate 
them.
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Paravirtualization

• Both type 1 and 2 hypervisors work on unmodified OS 
• Paravirtualization: modify OS kernel to replace all 

sensitive instructions with hypercalls 
– OS behaves like a user program making system calls 
– Hypervisor executes the privileged operation invoked by 

hypercall.
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Virtual machine Interface

• Standardize the VM interface so kernel can run on bare 
hardware or any hypervisor
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Memory virtualization

• OS manages page tables 
– Create new pagetable is sensitive -> traps to hypervisor 

• hypervisor manages multiple OS 
– Need a second shadow page table  
– OS: VM virtual pages to  VM’s physical pages 
– Hypervisor maps  to actual page in shadow page table 
– Two level mapping 
– Need to catch changes to page table (not privileged) 

• Change PT to read-only - page fault 
• Paravirtualized - use hypercalls to inform
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I/O Virtualization

• Each guest OS thinks it “owns” the disk 
• Hypervisor creates “virtual disks”  

– Large empty files on the physical disk that appear as “disks” to 
the guest OS 

• Hypervisor converts block # to file offset for I/O 
– DMA need physical addresses 

• Hypervisor needs to translate
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Examples

• Application-level virtualization: “process virtual 
machine” 

• VMM /hypervisor 
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Virtual Appliances  & Multi-Core

• Virtual appliance: pre-configured VM with OS/ apps 
pre-installed 
– Just download and run (no need to install/comfigure) 
– Software distribution using appliances 

• Multi-core CPUs 
– Run multiple VMs on multi-core systems 
– Each VM assigned one or more vCPU 
– Mapping from vCPUs to physical CPUs
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Use of Virtualization Today

• Data centers: 
– server consolidation: pack multiple virtual servers onto a 

smaller number of physical server 
• saves hardware costs, power and cooling costs 

• Cloud computing: rent virtual servers 
– cloud provider controls physical machines and mapping of 

virtual servers to physical hosts 
– User gets root access on virtual server 

• Desktop computing:  
– Multi-platform software development  
– Testing machines 
– Run apps from another platform
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Case Study: PlanetLab

• Distributed cluster across universities 
– Used for experimental research by students and faculty in 

networking and distributed systems 
• Uses a virtualized architecture 

– Linux Vservers 
– Node manager per machine 
– Obtain a “slice” for an experiment: slice creation service
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