Distributed Pervasive Systems

- Distributed Pervasive Systems
- Sensor Networks
- Energy in Distributed Systems (Green Computing)
 - Smart building case study

Lecture 26, page 1

Pervasive Computing

- Computing become pervasive or ubiquitous
- Computing everywhere
- Rise of "smart" devices
 - smart cities, smart homes, smart highways, smart classroom, ...

Distributed Pervasive Computing

- Internet of things
 - ability to network devices and have them communicate
- Sensor networks
 - Large networks of sensors
- Driven by miniaturization of computing
 - Tiny sensors with computing and communication capability

Lecture 26, page 3

Example Applications

Smart home

Personal Health Monitoring

Sensors to monitor fitness, diabetes, blood pressure, detect falls

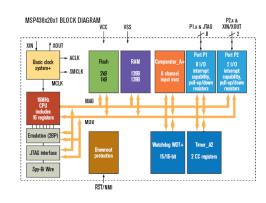
Google tests prototype of diabetestracking 'smart' contact lens

Lecture 25, page 5

Typical Smart Apps Architecture

- Personal device to mobile phone to the cloud
 - Upload data to cloud via a mobile device (or directly)
 - Low-power communication to phone
 - Cloud provides analytics and provides feedback to phone
- Environmental sensors to internet to the cloud
 - Internet-enabled sensors
 - direct upload to servers / cloud
 - Cloud provides analytics and provides dashboard

Sensor Platform


- Smart devices are a sensor platform
- Resource-constrained distributed system
- Typical Sensor platform
 - Low-power radios for communication
 - 10-200kbit/sec
 - Small CPUs
 - E.g. 8bit, 4k RAM.
 - Flash storage
 - Sensors
 - Battery driven or self-powered

Lecture 26, page 7

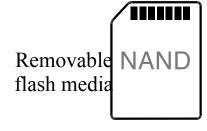
Small CPUs

- Example: Atmel AVR
 - 8 bit
 - 4 KB RAM
 - 128 KB code flash
 - ~2 MIPS @ 8MHz
 - $\sim 8 \text{ mA}$
- Example: TI MSP430
 - 16 bit (sort of)
 - 10 KB RAM
 - 48 KB code flash
 - 2 mA

Higher-powered processors:
ARM7 (Yale XYZ platform)
32 bit, 50 MHz, >>1MB RAM
ARM9 (StarGate, others)
32 bit, 400 MHz, >>16MB RAM

Low Power Radios

- ISM band 430, 900, or 2400 MHz
- Varying modulation and protocol:
 - Custom (FSK?) Mica2, 20 kbit/s
 - Bluetooth, Zwave, Treads
 - Zigbee (802.15.4) \sim 200kbit/sec
- Short range
 - Typically <100 meters</p>
- Low power. E.g. Chipcon CC2420:
 - 9-17 mA transmit (depending on output level)
 - 19 mA receive
- Listening can take more energy than transmitting



Lecture 26, page 9

Flash Storage

- Raw flash
- Small (serial NOR), very low power (NAND)
- Page-at-a-time write
- No overwrite without erasing
- Divided into pages and erase blocks
- Typical values: 512B pages,32 pages in erase block
- Garbage collection needed to gather free pages for erasing

Disk-like interface 512B re-writable blocks Very convenient Higher power consumption

"Cooked" flash

Battery Power

Example: Mica2 "mote"

• Total battery capacity: 2500mAH (2 AA cells)

• System consumption: 25 mA (CPU and radio on)

• Lifetime: 100 hours (4 days)

•

Alternatives:

Bigger batteries

Solar/wind/... ("energy harvesting")

Duty cycling

Lecture 26, page 11

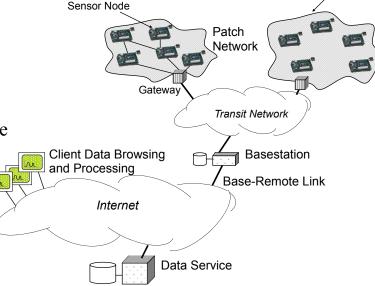
Sensors

- Temperature
- Humidity
- Magnetometer
- Vibration
- Acoustic
- Light
- Motion (e.g. passive IR)
- Imaging (cameras)
- Ultrasonic ranging
- GPS
- Lots of others...

Self-harvesting Sensors

- Harvest energy from environment to power themselves
 - tiny solar panels, use vibration, airflow, or wireless energy

Lecture 26, page 13


Sensor Patch

Typical Design Issues

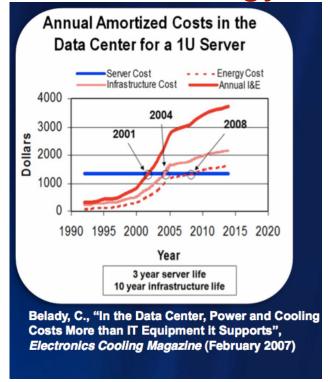
- Single node
 - Battery power or how to harvest energy to maximize lifetime
- Inside a network of sensors
 - Data aggregation
 - Duty cycling
 - Localization, Synchronization
 - Routing
- Once data is brought out of the network (server-side

processing)

- "Big data" analytics
- Derive insights
- Make recommendations, send alerts
- Provide active control

Green Computing

- Greening of computing
 - Sustainable IT
 - How to design energy-efficient hardware, software and systems?
- Computing for Greening
 - Use of IT to make physical infrastructure efficient?
 - Homes, offices, buildings, transportation


Lecture 26, page 15

Some History

- Energy-efficient mobile devices a long standing problem
 - Motivation: better battery life, not green
- Recent growth of data centers
 - More energy-efficient server design
 - Motivation: lower electricity bills
 - · Green systems, lower carbon footprint
- Apply "Greening" to other systems
 - IT for Greening

Data Center Energy Costs

Lecture 26, page 17

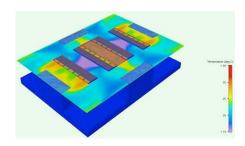
Energy Bill of a Google Data center

- Assume 100,000 servers
- Monthly cost of 1 server
 - 500W server
 - Cost=(Watts X Hours / 1000) * cost per KWH
 - Always-on server monthly cost = \$50
- Monthly bill for 100K servers = \$5M
- What about cost of cooling?
 - Use PUE (power usage efficiency)
 - PUE =2 => cost doubles
 - Google PUE of 1.2 => 20% extra on 5M (~ \$6M)

How to design green data centers?

- A green data center will
 - Reduce the cost of running servers
 - Cut cooling costs
 - Employ green best practices for infrastructure

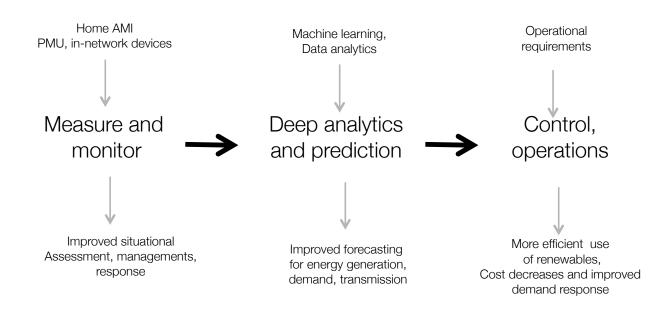
Lecture 26, page 19


Reducing server energy cost

- Buy / design energy-efficient servers
 - Better hardware, better power supplies
 - DC is more energy-efficient than AC
- Manage your servers better!
 - Intelligent power management
 - Turn off servers when not in use
 - Virtualization => can move apps around

Reducing cooling costs

- Better air conditioning
 - Thermal engineering / better airflow
 - Move work to cooler regions
- Newer cooling
 - Naturally cooled data centers
 - Direct air cooling


Lecture 26, page 21

IT for Greening

- Case Study: Smart Buildings
- Building as an example of a distributed system
 - Distributed pervasive system
 - Sensors monitor energy, occupancy, temperature etc
 - Analyze data
 - Exercise control
 - switch of lights or turn down heat in unoccupied zones
 - Use renewables to reduce carbon footprint
- How can we use IT to make buildings green?
 - Use sensors, smart software, smart appliances, smart meters

Approach

Lecture 26, page 23

Potential Solution

- Monitor and profile usage
 - Power supply/demand profile
- Increase Efficiency
 - Turn on/off systems automatically
 - Consolidate computers
 - Tune various subsystems
- Use Alternative Energy Sources
 - Tune systems to variable energy supplies

Outlet level Building Monitoring

- Designed sensors for power outlet monitoring
 - Based on the Kill-A-Watt design
- Modified sensor with low-power wireless radio
 - Transmits data to strategically placed receivers
 - Use plug computers for receivers

Lecture 26, page 25

Meter level Monitoring

 Install on main panel IED 5000-G

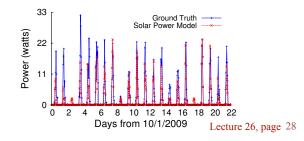
Analyzing the data

Energy monitors / sensors provide real-time usage data

- Smart meters:
- Building monitoring systems (BMS) data from office / commercial buildings

Modeling, Analytics and Prediction

- Use statistical techniques, machine learning and modeling to gain deep insights
 - Which homes have inefficient furnaces, heaters, dryers? Are you wasting energy in your home?
 - Is an office building's AC schedule aligned with occupancy patterns?
 - When will the aggregate load or transmission load peak?


Lecture 26, page 27

Use Renewables

- Rooftop Solar, Solar Thermal (to heat water)
- Design predictive analytics to model and forecast energy generation from renewables
 - Use machine learning and NWS weather forecasts to predict solar and wind generation
- Benefits: Better forecasts of near-term generation; "Sunny load" scheduling

People: Feedback and Incentives

- How to exploit big data to motivate consumers to be more energy efficient?
 - What incentives work across different demographics?
- Analysis can reveal insights into usage patterns, waste, efficiency opportunities
 - Smart phone as an engagement tool to deliver big data insights to end-users
 - Provide highly personalized recommendations, solicit user inputs, motivate users

Lecture 26, page 29

Course Summary

- Architectures
- Distributed communication
- Processes, Scheduling, Virtualization
- Naming
- Canonical Problems
- Replication, Consistency, Fault Tolerance
- Distributed File Systems
- Security in Distributed Systems
- Distributed middleware
- Special topics: streaming, web, cloud, pervasive, green

