
CMPSCI 677 Operating Systems Spring 2014

Lecture 14: March 9
Lecturer: Prashant Shenoy Scribe: Nikita Mehra

14.1 Distributed Snapshot Algorithm

A distributed snapshot algorithm captures a consistent global state of a distributed system. In case of a
distributed system, there is always a high probability of node failure, in which case the distributed snapshot
algorithm can be used by all the processes to load the most recent snapshot.A global state can be described by
a cut that indicates the time at which each process “checkpoints” its local state and messages. In the case of
a consistent cut C, if a message crosses C, its “send” should be before C and its “receive” should be after C.
When the system is recovered from a consistent cut, every message will be sent exactly once. If a message’s
“send” is after C while its “receive” is before C, C becomes inconsistent. It will cause problems when the
processes are restarted from an inconsistent cut. For example, message m2 can be executed twice.Please
refer to the diagram provided in the lecture slides.(Lecture 14 page 3).

The algorithm assumes that:

• There are no network failures

• Each process communicates with another process using unidirectional point-to-point channels

• There is no message reordering on each channel

• There is a communication path between any two processes

Marker messages are essentially the special messages to take a checkpoint. Any process can initiate the
algorithm by: 1) checkpointing its local state which contains all necessary information to restart itself, and
2) sending a marker on every outgoing channel. Then for every message from every incoming channel, the
process writes a copy to disk, until a subsequent marker is received.

Now every other process may receive markers. If one process receives its first marker, it also checkpoints its
local state, sends a marker on every outgoing channel and saves messages from all other incoming channels
until a subsequent marker comes.

A process finishes when it receives a marker on each incoming channel. It finally collects states of all channels
and send them with its own local state to initiator.

Multiple snapshots may be in progress. Each of them is separate and distinguished by tagging the marker
with the initiator ID (and sequence number).

This algorithm will always stop because: 1) every process sends markers and saves incoming messages only
when it receives the first marker; 2) every process stops saving messages from an incoming channel when it
receives a subsequent marker from that channel, and such a marker always comes.

There is a case that process B, for example, dont have any other incoming channels except the one receiving
the marker, it should send the marker through its outgoing channels and then stop.

14-1



14-2 Lecture 14: March 9

Intuitively, this algorithm can capture a consistent global state because: 1) no message is recorded/sent
twice; 2) no message is lost, since all messages in transit are always between the two markers on the channel
and therefore recorded.

14.2 Termination Detection Algorithm

A termination detection algorithm detects the end of a distributed computation when there is no coordinator
in the system. The end here means all processes are done and there are no messages(requests) in transit. A
process is done when all its local computation is done and there are no incoming messages(requests) from
other processes. The sender of messages is referred to as the “predecessor” and the receiver of messages is
referred to as a“successor”.

The algorithm needs two types of markers: Done indicates that a process is done, and Continue indicates
that a process is still working. It works as follows:

• Any process can initiate the algorithm by broadcasting Done to all its neighbors

• Any process that receives the request finishes its part of snapshot and sends the request to all its
neighbors except its sender. It returns a Done if it receives no message from predecessors, after it
checkpoints its local state and all its neighbors(successors) reply Done. Otherwise, it returns Continue

• The system is done if the initiator receives Done from everyone

14.3 Election Algorithms

It is important to pick a unique coordinator in distributed systems. The coordinator plays the role of the
master role many applications. It can be any peer of the system as long as it can be uniquely identified.
The coordinator cannot be fixed(hard-coded) since peers dynamically join and leave the network and hence
the new leader should also be dynamically chosen at run-time. The tasks performed by the coordinator vary
from application to application.

There are two typical algorithms: Bully Algorithm and Ring-Based Algorithm. They both assume that each
process has a unique numerical ID and the goal is to pick the one with highest ID as the coordinator.

14.3.1 Bully Algorithm

Bully Algorithm assumes that processes know the ID and address of every other process.

There are three types of messages: Election, OK, and I Won. Processes with higher IDs have high priority
to win.

A process can initiate the algorithm when it is just recovered from failure or its coordinator failed. It
broadcasts Election to all processes with higher IDs and awaits OK (there is no need to ask the processes
with lower IDs). If it receives no OK, it becomes the coordinator and sends I Won to all processes with
lower IDs. If it receives OK, it drops out and awaits I Won message from a process with higher ID.

Any process that receives Election returns OK and starts a new election. Any process that receives I Won
treats the sender as the coordinator.



Lecture 14: March 9 14-3

There can be multiple elections at the same time.

One question is how can a sender know if a receiver has already failed so it needs not to await the reply.
Luckily in some cases, the sender knows the receiver’s failure immediately because it cannot setup a connec-
tion. In other cases, a timeout mechanism may work. A receiver is considered failed if it does not respond
after a while. Even if the receiver is just slow and responds after timeout period expired, it can initiate a
new election if it has a higher ID than current coordinator’s.

Its a simple algorithm that only depends on the IDs. But in some other cases, we could change to consider
the current work load factor, network connection factor as the main criteria to decide on the leader.

14.3.2 Ring-Based Algorithm

Ring-Based Algorithm assumes that processes are arranged in a logical ring and each one knows its two
neighbors’ IDs and addresses.

Similarly, a process can initiate the algorithm when it is recovered or its coordinator failed. It sends Election
to its closest alive downstream node. Then every process tags its ID on the message. Finally the message
comes back to the initiator. It picks the process with highest ID and sends a coordinator message.

There can also be multiple elections in progress.

Suppose there are n processes and one election in progress: Ring-Based Algorithm always needs 2(n − 1)
messages, while Bully Algorithm needs (n− 2) messages in the best case, and O(n2) messages in the worst
case.

14.3.3 Election in Large-Scale Systems

In a real large-scale distributed system, the requirement for a leader may be different from the ideal case
above. For example, instead of picking the process with the highest ID, people may want the one with the
best network/CPU performance. Performance information can be attached as a modification of the above
algorithms. Sometimes there can even be multiple leaders(superpeers) in the system. Requirements for
superpeers selection are:

• Normal nodes should have low-latency access to superpeers

• Superpeers should be evenly distributed across the overlay network

• There should be a predefined portion of superpeers relative to the total number of nodes in the overlay
network

• Each superpeer should not serve more than a fixed number of normal nodes

14.4 Distributed Synchronization

When multiple processes in a distributed system access some shared data or data structure, people can use
critical sections with mutual exclusion. This problem can be solved in a single process with multiple threads
by using semaphores, locks or monitors. In a distributed system, a lock mechanism is required.



14-4 Lecture 14: March 9

14.4.1 Centralized Algorithm

Assume processes are numbered and the one with highest ID is elected coordinator. 1) Every process needs
to send a request to the coordinator and await grant before entering the critical section. When it is finished,
it sends a release to the coordinator. 2) When the coordinator receives a request, it sends a grant if the lock
is available; Otherwise, it puts the process to a queue. When the coordinator receives a release, it sends
grant to the process at the front of the queue.

Although this is a straightforward method, there are many issues. For example, what will the system do
when the coordinator crashes. A new coordinator may not know which process is holding the lock. One may
suggest to use a log file and let the new coordinator check the log. Then how to maintain a global log in a
distributed system becomes a new problem. Another problem may be the case that a process with the lock
crashes. The coordinator cannot take the lock back since it cannot tell whether the process has failed or it
is just slow.

Advantages:

• Fair: requests are granted the lock in the order they were received (actually other strategies can also
be implemented)

• Simple: three messages per use of a critical section (request, grant, release)

Disadvantages:

• The coordinator is a single point of failure

• Hard to detect a dead coordinator

• Performance bottleneck in large distributed systems

14.4.2 Decentralized Algorithm

Decentralized algorithm uses voting. It assumes n replicas of coordinator threads. Any process needs
majority vote m > n/2 to acquire the lock. This algorithm works even when some coordinators crash.

14.4.3 Distributed Algorithm

This algorithm is based on event ordering and timestamps. It grants the lock to the process which requests
first.It can use Lamport’s Algorithm(Happened Before Relation) to decide the ordering of two request. But
using simple Lamport’s Alogrithms is not sufficient since the alogrithm can only decide a partial order. The
algorithm requires total ordering of events. By multicasting all the messages to all other processes total
ordering of events can be obtained.

When a process k asks for the lock, it:

• Generates a new time stamp TSk = TSk + 1

• Sends request(k, TSk) to all other processes

• Waits for reply(j) from all other processes



Lecture 14: March 9 14-5

• Enters critical section

When a process j receives request(k, TSk), it:

• Sends reply(j) if it is not interested

• Queues request(k, TSk) if it is in critical section

• If it wants to enter: if TSk < TSj sends reply(j), otherwise queues request(k, TSk)


