CMPSCI 677 Operating Systems Spring 2015

Lecture 10: February 25
Lecturer: Prashant Shenoy Scribe: Rufina Chettiar

10.1 Communication

Assume there are two end points that want to communicate with each other. There are multiple inter-
mediaries, such as nodes and routers. Also, there are OSs that implement the TCP/IP. There are a few
characteristics of a communication.

e Persistence:Persistence means that the network is capable of storing messages for a arbitrary period
of time until the next receiver is ready. Email and ground deliveries are good examples.

e Transient:Message is stored only so long as the next receiver is ready. For example, Transport- level
communication discards the message if the process crashes for any reason. The system will not store

the message.

e Asynchronous:Asynchronous communication means that the sender is doing non-blocking sending.
It continues immediately after submitting the message.

e Synchronous:Synchronous communication blocks the process until the message is received or the
sender gets a response from the server.
10.1.1 Persistent synchronous communication

The sender is blocked when it sends the message, waiting for a acknowledgement to come back. The message
is stored in a local buffer, waiting for the receiver to run and receive the message. Some instant message
applications, such as Blackberry messenger, are good examples. When you send out a message, the app
shows you the message is ”delivered” but not "read”. After the message is read, you will receive another
acknowledgement.

10.1.2 Transient asynchronous communication

Since the message is transient, both entities have to be running. Also, the sender doesn’t wait for responses
because it is asynchronous. UDP is an example.

10.1.3 Receipt-based transient synchronous communication

The acknowledgement sent back from the receiver indicates that the message has been received by the other
end. The receiver might be working on some other process.

10-1



10-2 Lecture 10: February 25

10.1.4 Delivery-based transient synchronous communication

The acknowledgement comes back to the sender when the other end actually takes control of the message.
Asynchronous RPC is an example.

10.1.5 Response-based transient synchronous communication

The sender blocks until the receiver processes the request and sends back a response. RPC is an example.
There is no clean mapping of TCP to any type of communication. From an application standpoint it maps
to transient asynchronous communication. However, in a protocol standpoint, it maps to a receipt-based
transient synchronous communication if it only has a one-size window.

10.2 Message-oriented Persistent Communication

This section explains what kind of middleware is required to perform persistent communication.

10.2.1 Message queuing system

The persistent queue exists between the sender and the receiver. It takes messages from the sender and
passes it down to the receiver whenever it is ready. It’s a queue that is stored on disks, so you can store
the message for an arbitrary amount of time. There are more than one persistent queue between the end
points. However, there is no guarantee that messages will be read. There are four abstract methods needed
to implement a message queuing system.

e put: append message to the queue

get: get the message from the queue

poll: poll to see if the queue is empty or not

notify: notify the sender when the message is put into the queue

In a more general architecture, there are usually many queues in the middle. There are application-level
routers that implements the message queuing system. Messages will be delivered hop by hop, and they will
be queued until the next receiver is ready.

IBM WebSphere MQ is a example of message queuing system. This is a middleware which compose of queue
managers, which manages the queue, and a channel agent, which manages the packet transportation. There
are also other open source MQSs. If disks that act as persistent queues only have finite capacity, there should
be a policy deciding how long are the messages queued. Email, for example, queues the mail for a certain
amount of time before the receiver is available.

10.2.2 Message Brokers

It transforms messages to the form that is needed. It can also be used as a filter. This is used in pub-
subsystems. The receiver could subscribe to a certain type of message, and when the message arrives at the
broker, it filters the message interested to the subscriber.



Lecture 10: February 25 10-3

10.3 Stream-Oriented Communication

Audio and video streaming are good examples of stream-oriented communication. You send the video file
in smaller pieces, and you have to send them continually in time. There are timing constraints to assure
good performance, which do not exist in message-oriented communication. Late data are actually not
much use. An important characteristic is isochronous communication. There are timeliness constraints in
stream-oriented communication. The network has to deliver data on time, or the users don’t get satisfactory
performance. Another characteristics is that this type of communication is server-push. There are no explicit
request for data from the user. The streaming server continues to send data to the client, and the client
simply keeps listening on the socket and receiving data. There are also client-pull streaming systems as well.

There are two classes of streaming depending on what type of data:

e Stored data streaming

e Live Streaming

Skype is an example of live streaming, and youtube is an example of stored data streaming. Live streaming
has even more stringent constraints, because people have lower tolerance of lag in live streaming. There
could be multiple receivers for one source, which can be done by a mechanism called multicast. Live stream
of a sporting event is an example of multicast.

10.4 Streams and Quality of Service

The application is demanding a certain level of quality. The network and end system should meet these
some requirements or the quality of service will not be satisfied. Bandwidth, delay, and lost constraints are
examples of possible demands.

Early streaming system are built on UDP because data retransmission of TCP causes more problem in
streaming. Nowadays, modern systems use TCP protocol to stream. Quality of video is another requirement
of quality of service. For example, on youtube allows you could set the playback quality of the video.
Moreover, It can estimate online the quality of packet streaming. If the system sees a lot of lost packets, it
will lower the quality of the video. The system could have requirements on jitters, which is the variance of
the delay. Bandwidth could be either fixed bandwidth or variant bandwidth.

There are two kinds of encoding scheme:

¢ Fixed rate encoding

e Variable rate encoding
In these, the encoding rates could vary depending on the encoded data. In the old days, People assume that
when the server starts streaming, it would tell the network the requirements it needs to have a satisfactory

streaming, then the network would reserve resources for this stream. This is not implemented nowadays
because it is difficult for the network to guarantee to provide resources. However, QOS is still needed.

10.4.1 Token bucket

One mechanism to enforce constraint on bandwidth is the token bucket, or leaking bucket. It is also called
the policing mechanism. Token bucket is an OS level mechanism. You could attach it to applications or



10-4 Lecture 10: February 25

a socket end points to enforce a constraint on the end point. You specify two parameters for the bucket:
rate r and burst b, and this mechanism guarantees that the transmission rate does not exceed r. Once in a
while, you can send a burst b of packets. The amount of data you can send at a time t is bounded by the
equation: r*t+b. When you start the token bucket system, there are b tokens in the bucket. Every time
an application generates a packet, it has to grab a token before it enters the network. Every second you
generate r new tokens and add them into the bucket. The bucket can hold a maximum of b tokens. If the
bucket is empty, no packets could pass. If an application requires rate r and burst b from the network, this
mechanism restricts the application to meet the requirements it specified itself.



