
Computer Science Lecture 18, page

Recovering from a Crash

• If INIT : abort locally and inform coordinator
• If Ready, contact another process Q and examine Q’s

state

CS677: Distributed OS 23

Computer Science Lecture 18, page CS677: Distributed OS

Three-Phase Commit

Two phase commit: problem if coordinator crashes (processes block)
Three phase commit: variant of 2PC that avoids blocking

24

Computer Science Lecture 18, page

Replication for Fault Tolerance

• Basic idea: use replicas for the server and data

• Technique 1: split incoming requests among replicas
– If one replica fails, other replicas take over its load
– Suitable for crash fault tolerance (each replica produces correct

results when it is us).

• Technique 2: send each request to all replicas
– Replicas vote on their results and take majority result
– Suitable for BFT (a replica can produce wrong results)

• 2PC, 3PC, Paxos are techniques
25

Computer Science Lecture 18, page

Consensus, Agreement
• Consensus protocols
• Achieve reliability in presence of faulty processes

– requires processes to agree on data value needed for computation
– Examples: whether to commit a transaction, agree on identity of a

leader, atomic broadcasts, distributed locks
• Properties of a consensus protocol with fail-stop failures

– Agreement: every correct process agrees on same value
– Termination: every correct process decides some value
– Validity: If all propose v, all correct processes decides v
– Integrity: Every correct process decided at most one value

and if it decides v, someone must have proposed v.

26

Computer Science Lecture 18, page

2PC, 3PC Problems
• Both have problems in presence of failures

– Safety is ensured but liveness is not
• 2PC

– must wait for all nodes and coordinator to be up
– all nodes must vote
– coordinator must be up

• 3PC
– handles coordinator failure
– but network partitions are still an issue

• Paxos : how to reach consensus in distributed systems
that can tolerate non-malicious failures?
– majority rather than all nodes particpate

27

Computer Science Lecture 18, page

Paxos: fault-tolerant agreement

• Paxos lets nodes agree on same value despite:
– node failures, network failures and delays

• Use cases:
– Nodes agree X is primary (or leader)
– Nodes agree Y is last operation (order operations)

• General approach
– One (or more) nodes decides to be leader (aka proposer)
– Leader proposes a value and solicits acceptance from others
– Leader announces result or tries again

• Proposed independently by Lamport and Liskov
– Widely used in real systems in major companies

28

Computer Science Lecture 18, page

Paxos Requirements
• Safety (Correctness)

– All nodes agree on the same value
– Agreed value X was proposed by some node

• Liveness (fault-tolerance)
– If less than N/2 nodes fail, remaining nodes will eventually

reach agreement
– Liveness not guaranteed if steady stream of failures

• Why is agreement hard?
– Network partitions
– Leader crashes during solicitation or after deciding but before

announcing results,
– New leader proposes different value from already decided value,
– More than one node becomes leader simultaneously....

29

Computer Science Lecture 18, page

Paxos Setup
• Entities: Proposer (leader), acceptor, learner

– Leader proposes value, solicits acceptance from acceptors
– Acceptors are nodes that want to agree; announce chosen value to

learners
• Proposals are ordered by proposal #

– node can choose any high number to try to get proposal accepted
– An acceptor can accept multiple proposals

• If prop with value v chosen, all higher proposals have value v
• Each node maintains

– n_a, v_a: highest proposal # and accepted value
– n_h : highest proposal # seen so far
– my_n: my proposal # in current Paxox

30

Computer Science Lecture 18, page

Paxos operation: 3 phase protocol

• Phase 1 (Prepare phase)
– A node decides to be a leader and propose
– Leader chooses my_n > n_h
– Leader sends <prepare, my_n> to all nodes
– Upon receiving <prepare, n> at acceptor

• If n < n_h
– reply <prepare-reject> /* already seen higher # proposal */

• Else
– n_h = n /* will not accept prop lower than n */
– reply <prepare-ok, n_a, v_a> /* send back previous prop, value/
– /* can be null, if first */

31

Computer Science Lecture 18, page

Paxos operation

• Phase 2 (accept phase)
– If leader gets prepare-ok from majority

• V = non-empty value from highest n_a received
• If V = null, leader can pick any V
• Send <accept, my_n, V> to all nodes

– If leader fails to get majority prepare-ok
• delay and restart Paxos

– Upon receiving <accept, n, V>
• If n < n_h

– reply with <accept-reject>
• else

– n_a=n ; v_a = V; n_h = h; reply <accept-ok>
32

Computer Science Lecture 18, page

Paxos Operation

• Phase 3 (decide)
– If leader gets accept-ok from majority

• Send <decide, v_a> to all learners
– If leader fails to get accept-ok from a majority

• Delay and restart Paxos

• Properties
– P1: any proposal number is unique
– P2: any two set of acceptors have at least one node in common
– P3: value sent in phase 2 is value of highest numbered proposal

received in responses in phase 1

33

Computer Science Lecture 18, page

Paxos Exampe

34

Computer Science Lecture 18, page

Issues
• Network partitions:

– With one partition, will have majority on one side and can
come to agreement (if nobody fails)

• Timeouts
– A node has max timeout for each message
– Upon timeout, declare itself as leader and restart Paxos

• Two leaders
– Either one leader is not able to decide (does not receive

majority accept-oks since nodes see higher proposal from other
leader) OR

– one leader causes the other to use it value
• Leader failures: same as two leaders or timeout occurs

35

Computer Science Lecture 18, page CS677: Distributed OS

Recovery

• Techniques thus far allow failure handling
• Recovery: operations that must be performed after a

failure to recover to a correct state
• Techniques:

– Checkpointing:
• Periodically checkpoint state
• Upon a crash roll back to a previous checkpoint with a

consistent state

36

Computer Science Lecture 18, page CS677: Distributed OS

Independent Checkpointing

• Each processes periodically checkpoints independently of other
processes

• Upon a failure, work backwards to locate a consistent cut
• Problem: if most recent checkpoints form inconsistenct cut, will need

to keep rolling back until a consistent cut is found
• Cascading rollbacks can lead to a domino effect.

37

Computer Science Lecture 18, page CS677: Distributed OS

Coordinated Checkpointing

• Take a distributed snapshot [discussed in Lec 11]

• Upon a failure, roll back to the latest snapshot
– All process restart from the latest snapshot

38

Computer Science Lecture 18, page

Logging

• Logging : a common approach to handle failures
– Log requests / responses received by system on separate

storage device / file (stable storage)
• Used in databases, filesystems, ...

• Failure of a node
– Some requests may be lost
– Replay log to “roll forward” system state

39

Computer Science Lecture 18, page CS677: Distributed OS

Message Logging

• Checkpointing is expensive
– All processes restart from previous consistent cut
– Taking a snapshot is expensive
– Infrequent snapshots => all computations after previous

snapshot will need to be redone [wasteful]
• Combine checkpointing (expensive) with message

logging (cheap)
– Take infrequent checkpoints
– Log all messages between checkpoints to local stable storage
– To recover: simply replay messages from previous checkpoint

• Avoids recomputations from previous checkpoint

40

