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Last Class

• Leader election 

• Distributed mutual exclusion
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Decentralized Algorithm

• Use voting  
• Assume n replicas and a coordinator per replica 
• To acquire lock, need majority vote  m > n/2 

coordinators 
– Non blocking: coordinators returns OK or “no” 

• Coordinator crash => forgets previous votes 
– Probability that k coordinators crash P(k) = mCk pk (1-p)m-k 

– Atleast 2m-n need to reset to violate correctness 
• ∑ 2m-n 

nP(k)

2



Computer Science Lecture 14, page CS677: Distributed OS

Distributed Algorithm

• [Ricart and Agrawala]: needs 2(n-1) messages 
• Based on event ordering and time stamps 

– Assumes total ordering of events in the system (Lamport’s clock) 
• Process k enters critical section as follows 

–  Generate new time stamp TSk = TSk+1 

– Send request(k,TSk) all other n-1 processes 
– Wait until reply(j)  received from all other processes 
– Enter critical section 

• Upon receiving a request message, process j 
– Sends reply if no contention 
– If already in critical section, does not reply, queue request 
– If wants to enter, compare TSj with TSk and send reply if TSk<TSj, else 

queue
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A Distributed Algorithm

a) Two processes want to enter the same critical region at the same 
moment. 

b) Process 0 has the lowest timestamp, so it wins. 
c) When process 0 is done, it sends an OK also, so 2 can now enter the 

critical region.
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Properties

• Fully decentralized 

• N points of failure! 

• All processes are involved in all decisions 
– Any overloaded process can become a bottleneck
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A Token Ring Algorithm

a) An unordered group of processes on a network.   
b) A logical ring constructed in software.

• Use a token to arbitrate access to critical section 
• Must wait for token before entering CS 
• Pass the token to neighbor once done or if not interested 
• Detecting token loss in non-trivial
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Comparison

• A comparison of four mutual exclusion algorithms.

Algorithm Messages per 
entry/exit

Delay before entry (in 
message times) Problems

Centralized 3 2 Coordinator crash

Decentralized 3mk 2m starvation

Distributed 2 ( n – 1 ) 2 ( n – 1 ) Crash of any 
process

Token ring 1 to ∞ 0 to n – 1 Lost token, process 
crash
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Transactions
•Transactions provide higher level 
mechanism for atomicity of 
processing in distributed systems 

– Have their origins in databases 
•Banking example: Three 
accounts A:$100, B:$200, C:$300 

– Client 1:  transfer $4 from A to B 
– Client 2: transfer $3 from C to B 

•Result can be inconsistent unless 
certain properties are imposed on 
the accesses

Client 1 Client 2
Read A: $100
Write A: $96

Read C: $300
Write C:$297

Read B: $200
Read B: $200
Write B:$203

Write B:$204
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ACID Properties

•Atomic: all or nothing 
•Consistent: transaction takes 
system from one consistent state to 
another 
•Isolated: Immediate effects are 
not visible to other (serializable) 
•Durable: Changes are permanent 
once transaction completes 
(commits)

Client 1 Client 2
Read A: $100
Write A: $96
Read B: $200
Write B:$204

Read C: $300
Write C:$297
Read B: $204
Write B:$207
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Transaction Primitives

Example: airline reservation 
Begin_transaction

if(reserve(NY,Paris)==full) Abort_transaction
if(reserve(Paris,Athens)==full)Abort_transaction
if(reserve(Athens,Delhi)==full) Abort_transaction

End_transaction

Primitive Description

BEGIN_TRANSACTION Make the start of a transaction

END_TRANSACTION Terminate the transaction and try to commit

ABORT_TRANSACTION Kill the transaction and restore the old values

READ Read data from a file, a table, or otherwise

WRITE Write data to a file, a table, or otherwise
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Distributed Transactions

a) A nested transaction 
b) A distributed transaction
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Implementation: Private Workspace 
• Each transaction get copies of all files, objects 
• Can optimize for reads by not making copies 
• Can optimize for writes by copying only what is required 
• Commit requires making local workspace global
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Option 2: Write-ahead Logs

• In-place updates: transaction makes changes directly to all files/objects 
• Write-ahead log: prior to making change, transaction writes to log on stable 

storage 
– Transaction ID, block number, original value, new value 

• Force logs on commit 
• If abort, read log records and undo changes [rollback] 
• Log can be used to rerun transaction after failure 

• Both workspaces and logs work for distributed transactions 
• Commit needs to be atomic [will return to this issue in Ch. 7]
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Writeahead Log Example

• a) A transaction 
• b) – d) The log before each statement is executed

x = 0; 
y = 0; 
BEGIN_TRANSACTION; 
  x = x + 1; 
  y = y + 2 
  x = y * y; 
END_TRANSACTION; 
              (a) 

Log 

[x = 0 / 1] 

  (b)

Log 

[x = 0 / 1] 
[y = 0/2] 

   (c)   

Log 

[x = 0 / 1] 
[y = 0/2] 
[x = 1/4] 

    (d)
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Concurrency Control

• Goal: Allow several transactions to be executing 
simultaneously such that 
– Collection of manipulated data item is left in a consistent state 

• Achieve consistency by ensuring data items are accessed 
in an specific order  
– Final result should be same as if each transaction ran 

sequentially 

• Concurrency control can implemented in a layered fashion
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Concurrency Control Implementation

• General organization of managers for handling transactions.
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Distributed Concurrency Control
• General organization of 

managers for handling 
distributed transactions.
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Serializability

• Key idea: properly schedule conflicting operations 
• Conflict possible if at least one operation is write 

– Read-write conflict 
– Write-write conflict

BEGIN_TRANSACTION  
  x = 0; 
  x = x + 1; 
END_TRANSACTION 
 
              (a)

BEGIN_TRANSACTION  
  x = 0; 
  x = x + 2; 
END_TRANSACTION 
 
              (b)

BEGIN_TRANSACTION  
  x = 0; 
  x = x + 3; 
END_TRANSACTION 
 
              (c)

Schedule 1 x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3 Legal

Schedule 2 x = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3; Legal

Schedule 3 x = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3; Illegal
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Optimistic Concurrency Control

• Transaction does what it wants and validates changes prior to 
commit 
– Check if files/objects have been changed by committed transactions since 

they were opened 
– Insight: conflicts are rare, so works well most of the time 

• Works well with private workspaces 
• Advantage:  

– Deadlock free 
– Maximum parallelism 

• Disadvantage: 
– Rerun transaction if aborts 
– Probability of conflict rises substantially at high loads 

• Not used widely
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Two-phase Locking

• Widely used concurrency control technique 
• Scheduler acquires all necessary locks in growing phase, 

releases locks in shrinking phase 
– Check if operation on data item x conflicts with existing locks 

• If so, delay transaction. If not, grant a lock on x 
– Never release a lock until data manager finishes operation on x 
– One a lock is released, no further locks can be granted 

• Problem: deadlock possible 
– Example: acquiring two locks in different order 

• Distributed 2PL versus centralized 2PL
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Two-Phase Locking 

• Two-phase locking.
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Strict Two-Phase Locking 

• Strict two-phase locking.
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Timestamp-based Concurrency Control

• Each transaction Ti is given timestamp ts(Ti) 
• If Ti wants to do an operation that conflicts with Tj 

– Abort Ti if ts(Ti) < ts(Tj) 
• When a transaction aborts, it must restart with a new 

(larger) time stamp 
• Two values for each data item x 

– Max-rts(x): max time stamp of a transaction that read x 
– Max-wts(x): max time stamp of a transaction that wrote x
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Reads and Writes using Timestamps

• Readi(x) 
– If ts(Ti) < max-wts(x) then Abort Ti 

– Else 
• Perform Ri(x) 

• Max-rts(x) = max(max-rts(x), ts(Ti)) 

• Writei(x) 
– If ts(Ti)<max-rts(x) or ts(Ti)<max-wts(x) then Abort Ti 

– Else 
• Perform Wi(x) 

• Max-wts(x) = ts(Ti)
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Pessimistic Timestamp Ordering

• Concurrency control using timestamps.
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