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SUMMARY

The Sprite operating system allows executing processes to be moved between hosts at any time. We use
this process migration mechanism to offload work onto idle machines, and also to evict migrated processes
when idle workstations are reclaimed by their owners. Sprite’s migration mechanism provides a high
degree of transparency both for migrated processes and for users. Idle machines are identified, and
eviction is invoked, automatically by daemon processes. On Sprite it takes up to a few hundred
milliseconds on SPARCstation 1 workstations to perform a remote exec, whereas evictions typically
occur in a few seconds. The pmake program uses remote invocation to invoke tasks concurrently.
Compilations commonly obtain speed-up factors in the range of three to six; they are limited primarily
by contention for centralized resources such as file servers. CPU-bound tasks such as simulations can
make more effective use of idle hosts, obtaining as much as eight-fold speed-up over a period of hours.
Process migration has been in regular service for over two years.
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INTRODUCTION

In a network of personal workstations, many machines are typically idle at any given
time. These idle hosts represent a substantial pool of processing power, many times
greater than what is available on any user’s personal machine in isolation. In recent
years a number of mechanisms have been proposed or implemented to harness idle
processors (e.g. References 1–4 ). We have implemented process migration in the
Sprite operating system for this purpose; this paper is a description of our implemen-
tation and our experiences using it.

By ‘process migration’ we mean the ability to move a process’s execution site at
any time from a source machine to a destination (or target) machine of the same
architecture. In practice, process migration in Sprite usually occurs at two particular
times. Most often, migration happens as part of the exec system call when a resource-
intensive program is about to be initiated. Exec -time migration is particularly convenient
because the process’s virtual memory is reinitialized by the exec system call and thus
need not be transferred from the source to the target machine. The second common
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occurrence of migration is when a user returns to a workstation when processes have
been migrated to it. At that time all the foreign processes are automatically evicted
back to their home machines to minimize their impact on the returning user’s
interactive response.

Sprite’s process migration mechanism provides an unusual degree of transparency.
Process migration is almost completely invisible both to processes and to users. In
Sprite, transparency is defined relative to the home machine for a process, which is
the machine where the process would have executed if there had been no migration
at all. A remote process (one that has been migrated to a machine other than its
home) has exactly the same access to virtual memory, files, devices and nearly all
other system resources that it would have if it were executing on its home machine.
Furthermore, the process appears to users as if it were still executing on its home
machine: its process identifier does not change, it appears in process listings on the
home machine, and it may be stopped, restarted and killed just like other processes.
The only obvious sign that a process has migrated is that the load on the source
machine suddenly drops and the load on the destination machine suddenly increases.

Although many experimental process migration mechanisms have been
implemented, Sprite’s is one of only a few to receive extensive practical use (other
notable examples are LOCUS 5 and MOSIX 6 ). Sprite’s migration facility has been
in regular use for over two years. Our version of the make utility 7 uses process
migration automatically so that compilations of different files, and other activities
controlled by make, are performed concurrently. The speed-up from migration
depends on the number of idle machines and the amount of parallelism in the task
to be performed, but we commonly see speed-up factors of two or three in compi-
lations and we occasionally obtain speed-ups as high as five or six. In our environ-
ment, about 30 per cent of all user activity is performed by processes that are not
executing on their home machine.

In designing Sprite’s migration mechanism, many alternatives were available to
us. Our choice among those alternatives consisted of a trade-off among four factors:
transparency, residual dependencies, performance and complexity. A high degree
of transparency implies that processes and users need not act differently after
migration occurs than before. If a migration mechanism leaves residual dependencies
(also known as ‘residual host dependencies’ 3,8 ), the source machine must continue
to provide some services for a process even after the process has migrated away
from it. Residual dependencies are generally undesirable, since they affect the
performance of the source machine and make the process vulnerable to failures of
the source. By performance, we mean that the act of migration should be efficient,
and that remote processes should (ideally) execute with the same efficiency as if
they had not migrated. Lastly, complexity is an important factor because process
migration tends to affect virtually every major piece of an operating system kernel.
If the migration mechanism is to be maintainable, it is important to limit this impact
as much as possible.

Unfortunately, these four factors are in conflict with each other. For example,
highly-transparent migration mechanisms are likely to be more complicated and
cause residual dependencies. High-performance migration mechanisms may transfer
processes quickly at the cost of residual dependencies that degrade the performance
of remote processes. A practical implementation of migration must make trade-offs
among the factors to fit the needs of its particular environment. As will be seen in
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the sections below, we emphasized transparency and performance, but accepted
residual dependencies in some situations. (See Reference 9 for another discussion
of the trade-offs in migration, with a somewhat different result. )

A broad spectrum of alternatives also exists for the policy decisions that determine
what, when, and where to migrate. For Sprite we chose a semi-automatic approach.
The system helps to identify idle hosts, but it does not automatically migrate processes
except for eviction. Instead, a few application programs such as pmake identify long-
running processes (perhaps with user assistance) and arrange for them to be migrated
to idle machines. When users return to their machines, a system program automati-
cally evicts any processes that had been migrated onto those machines.

THE SPRITE ENVIRONMENT

Sprite is an operating system for a collection of personal workstations and file servers
on a local area network. 10 Sprite’s kernel-call interface is much like that of 4.3 BSD
UNIX*, but Sprite’s implementation is a new one that provides a high degree of
network integration. For example, all the hosts on the network share a common
high-performance file system. Processes may access files or devices on any host, and
Sprite allows file data to be cached around the network while guaranteeing the
consistency of shared access to files. 11 Each host runs a distinct copy of the Sprite
kernel, but the kernels work closely together using a remote-procedure-call (RPC)
mechanism similar to that described by Birrell and Nelson. 12

Four aspects of our environment were particularly important in the design of
Sprite’s process migration facility:

1. Idle hosts are plentiful. Since our environment consists primarily of personal
machines, it seemed likely to us that many machines would be idle at any given
time. For example, Theimer reported that one-third of all machines were
typically idle in a similar environment;3 Nichols reported that 50–70 worksta-
tions were typically idle during the day in an environment with 350 workstations
total; l and our own measurements below show 66–78 per cent of all worksta-
tions idle on average. The availability of many idle machines suggests that
simple algorithms can be used for selecting where to migrate: there is no need
to make complex choices among partially-loaded machines.

2. Users ‘own’ their workstations. A user who is sitting in front of a workstation
expects to receive the full resources of that workstation. For migration to be
accepted by our users, it seemed essential that migrated processes not degrade
interactive response. This suggests that a machine should only be used as a
target for migration if it is known to be idle, and that foreign processes should
be evicted if the user returns before they finish.

3. Sprite uses kernel calls. Most other implementations of process migration are
in message-passing systems where all communication between a process and
the rest of the world occurs through message channels. In these systems, many
of the transparency aspects of migration can be handled simply by redirecting
message communication to follow processes as they migrate. In contrast, Sprite
processes are like UNIX processes in that system calls and other forms of
interprocess communication are invoked by making protected procedure calls

*UNIX is a registered trademark of UNIX System Laboratories, Inc.
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into the kernel. In such a system the solution to the transparency problem is
not as obvious; in the worst case, every kernel call might have to be specially
coded to handle remote processes differently than local ones. We consider this
issue in greater depth below.

4. Sprite already provides network support. We were able to capitalize on existing
mechanisms in Sprite to simplify the implementation of process migration. For
example, Sprite already provided remote access to files and devices, and it has
a single network-wide space of process identifiers; these features and others
made it much easier to provide transparency in the migration mechanism. In
addition, process migration was able to use the same kernel-to-kernel remote
procedure call facility that is used for the network file system and many other
purposes. On SPARCstation 1 workstations (roughly 10 MIPS) running on a
10 Mbits/s Ethernet, the minimum round-trip latency of a remote procedure
call is about 1·6 ms and the throughput is 480–660 Kbytes/s. Much of the
efficiency of our migration mechanism can be attributed to the efficiency of
the underlying RPC mechanism.

To summarize our environmental considerations, we wished to offload work to
machines whose users are gone, and to do it in a way that would not be noticed by
those users when they returned. We also wanted the migration mechanism to work
within the existing Sprite kernel structure, which had one potential disadvantage
(kernel calls) and several potential advantages (network-transparent facilities and a
fast RPC mechanism).

WHY MIGRATION?

Much simpler mechanisms than migration are already available for invoking oper-
ations on other machines. In order to understand why migration might be useful,
consider the rsh command, which provides an extremely simple form of remote
invocation under the BSD versions of UNIX. rsh takes as arguments the name of a
machine and a command, and causes the given command to be executed on the
given remote machine. 13

rsh has the advantages of being simple and readily available, but it lacks four
important features: transparency, eviction, performance and automatic selection.
First, a process created by rsh does not run in the same environment as the parent
process: the current directory may be different, environment variables are not
transmitted to the remote process, and in many systems the remote process will not
have access to the same files and devices as the parent process. In addition, the user
has no direct access to remote processes created by rsh: the processes do not appear
in listings of the user’s processes and they cannot be manipulated unless the user
logs in to the remote machine. We felt that a mechanism with greater transparency
than rsh would be easier to use.

The second problem with rsh is that it does not permit eviction. A process started
‘by rsh cannot be moved once it has begun execution. If a user returns to a machine
with rsh -generated processes, then either the user must tolerate degraded response
until the foreign processes complete, or the foreign processes must be killed, which
causes work to be lost and annoyance to the user who owns the foreign processes.
Nichols’ butler system terminates foreign processes after warning the user and provid-
ing the processes with the opportunity to save their state, but Nichols noted that the
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ability to migrate existing processes would make butler ‘much more pleasant to use’. 1

Another option is to run foreign processes at low priority so that a returning user
receives acceptable interactive response, but this would slow down the execution of
the foreign processes. It seemed to us that several opportunities for annoyance could
be eliminated, both for the user whose jobs are offloaded and for the user whose
workstation is borrowed, by evicting foreign processes when the workstation’s user
returns.

The third problem with rsh is performance. rsh uses standard network protocols
with no particular kernel support; the overhead of establishing connections, checking
access permissions, and establishing an execution environment may result in delays
of several seconds. This makes rsh impractical for short-lived jobs and limits the
speed-ups that can be obtained using it.

The final problem with rsh is that it requires the user to pick a suitable destination
machine for offloading. In order to make offloading as convenient as possible for
users, we decided to provide an automatic mechanism to keep track of idle machines
and select destinations for migration.

Of course, it is unfair to make comparisons with rsh, since some of its disadvantages
could be eliminated without resorting to full-fledged process migration. For example,
Nichols’ butler layers an automatic selection mechanism on top of a rsh -like remote
execution facility. Several remote execution mechanisms, including butler, preserve
the current directory and environment variables. Some UNIX systems even provide
a ‘checkpoint/restart’ facility that permits a process to be terminated and later
recreated as a different process with the same address space and open files. 14 A
combination of these approaches, providing remote invocation and checkpointing but
not process migration, would offer significant functionality without the complexity of
a full-fledged process migration facility.

The justification for process migration, above and beyond remote invocation, is
twofold. First, process migration provides additional flexibility that a system with
only remote invocation lacks. Checkpointing and restarting a long-running process
is not always possible, especially if the process interacts with other processes;
ultimately, the user would have to decide whether a process can be checkpointed or
not. With transparent process migration, the system need not restrict which processes
make use of load-sharing. Secondly, migration is only moderately more complicated
than transparent remote invocation. Much of the complexity in remote execution
arises even if processes can only move in conjunction with program invocation. In
particular, if remote execution is transparent it turns shared state into distributed
shared state, which is much more difficult to manage. The access position of a file
is one example of this effect, as described below in the section on transferring
open files. Many of the other issues about maintaining transparency during remote
execution would also remain. Permitting a process to migrate at other times during
its lifetime requires the system to transfer additional state, such as the process’s
address space, but is not significantly more complicated.

Thus we decided to take an extreme approach and implement a migration mechan-
ism that allows processes to be moved at any time, to make that mechanism as
transparent as possible, and to automate the selection of idle machines. We felt that
this combination of features would encourage the use of migration. We also reco-
gnized that our mechanism would probably be much more complex than rsh. As a
result, one of our key criteria in choosing among implementation alternatives was
simplicity.
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THE OVERALL PROBLEM: MANAGING STATE
The techniques used to migrate a process depend on the state associated with the
process being migrated. If there existed such a thing as a stateless process, then
migrating such a process would be trivial. In reality processes have large amounts
of state, and both the amount and variety of state seem to be increasing as operating
systems evolve. The more state, the more complex the migration mechanism is likely
to be. Process state typically includes the following:

1. Virtual memory. In terms of bytes, the greatest amount of state associated with
a process is likely to be the memory that it accesses. Thus the time to migrate
a process is limited by the speed of transferring virtual memory.

2. Open files. If the process is manipulating files or devices, then there will be
state associated with these open channels, both in the virtual memory of the
process and also in the operating system kernel’s memory. The state for an
open file includes the internal identifier for the file, the current access position,
and possibly cached file blocks. The cached file blocks may represent a substan-
tial amount of storage, in some cases greater than the process’s virtual memory.

3. Message channels. In a message-based operating system such as Mach 15 or
V, 16 state of this form would exist in place of open files. (In such a system
message channels would be used to access files, whereas in Sprite, file-like
channels are used for interprocess communication. ) The state associated with
a message channel includes buffered messages plus information about senders
and receivers.

4. Execution state. This consists of information that the kernel saves and restores
during a context switch, such as register values and condition codes.

5. Other kernel state. Operating systems typically store other data associated with
a process, such as the process’s identifier, a user identifier, a current working
directory, signal masks and handlers, resource usage statistics, references to
the process’s parent and children, and so on.

The overall problem in migration is to maintain a process’s access to its state after
it migrates. For each portion of state, the system must do one of three things during
migration: transfer the state, arrange for forwarding, or ignore the state and sacrifice
transparency. To transfer a piece of state, it must be extracted from its environment
on the source machine, transmitted to the destination machine, and reinstated in
the process’s new environment on that machine. For state that is private to the
process, such as its execution state, state transfer is relatively straightforward. Other
state, such as internal kernel state distributed among complex data structures, may
be much more difficult to extract and reinstate. An example of ‘difficult’ state in
Sprite is information about open files-particularly those being accessed on remote
file servers—as described below. Lastly, some state may be impossible to transfer.
Such state is usually associated with physical devices on the source machine. For
example, the frame buffer associated with a display must remain on the machine
containing the display; if a process with access to the frame buffer migrates, it will
not be possible to transfer the frame buffer.

The second option for each piece of state is to arrange for forwarding. Rather
than transfer the state to stay with the process, the system may leave the state where
it is and forward operations back and forth between the state and the process. For
example I/O devices cannot be transferred, but the operating system can arrange
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for output requests to be passed back from the process to be device, and for input
data to be forwarded from the device’s machine to the process. In the case of
message channels, arranging for forwarding might consist of changing sender and
receiver addresses so that messages to and from the channel can find their way from
and to the process. Ideally, forwarding should be implemented transparent y, so that
it is not obvious outside the operating system whether the state was transferred or
forwarding was arranged.

The third option, sacrificing transparency, is a last resort: if neither state transfer
nor forwarding is feasible, then one can ignore the state on the source machine and
simply use the corresponding state on the target machine. The only situation in
Sprite where neither state transfer nor forwarding seemed reasonable is for memory-
mapped I/O devices such as frame buffers, as alluded to above. In our current
implementation, we disallow migration for processes using these devices.

In a few rare cases, lack of transparency may be desirable. For example, a process
that requests the amount of physical memory available should obtain information
about its current host rather than its home machine. For Sprite, a few special-
purpose kernel calls, such as to read instrumentation counters in the kernel, are also
intentionally non-transparent with respect to migration. In general, though, it would
be unfortunate if a process behaved differently after migration than before.

On the surface, it might appear that message-based systems such as Accent, 17

Charlotte 9 or V 16 simplify many of the state-management problems. In these systems
all of a process’s interactions with the rest of the world occur in a uniform fashion
through message channels. Once the basic execution state of a process has been
migrated, it would seem that all of the remaining issues could be solved simply by
forwarding messages on the process’s message channels. The message forwarding
could be done in a uniform fashion, independent of the servers being communicated
with or their state about the migrated process.

In contrast, state management might seem more difficult in a system like Sprite
that is based on kernel calls. In such a system most of a process’s services must be
provided by the kernel of the machine where the process executes. This requires
that the state for each service be transferred during migration. The state for each
service will be different, so this approach would seem to be much more complicated
than the uniform message-forwarding approach.

It turns out that neither of these initial impressions is correct. For example, it
would be possible to implement forwarding in a kernel-call-based system by leaving
all of the kernel state on the home machine and using remote procedure call to
forward home every kernel call. 14 This would result in something very similar to
forwarding messages, and we initially used an approach like this in Sprite.

Unfortunately, an approach based entirely on forwarding kernel calls or forwarding
messages will not work in practice, for two reasons. The first problem is that some
services must necessarily be provided on the machine where a process is executing.
If a process invokes a kernel call to allocate virtual memory (or if it sends a message
to a memory server to allocate virtual memory), the request must be processed by
the kernel or server on the machine where the process executes, since only that
kernel or server has control over the machine’s page tables. Forwarding is not a
viable option for such machine-specific functions: state for these operations must be
migrated with processes. The second problem with forwarding is cost. It will often
be much more expensive to forward an operation to some other machine than to
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process it locally. If a service is available locally on a migrated process’s new machine,
it will be more efficient to use the local service than to forward operations back to
the service on the process’s old machine.

Thus, in practice all systems must transfer substantial amounts of state as part of
process migration. Message-based systems make migration somewhat easier than
kernel-call-based systems, because some of the state that is maintained by the kernel
in a kernel-call-based system is maintained in a process’s address space in a message-
based system. This state is transferred implicitly with the address space of the
process. For other state, both types of system must address the same issues.

MECHANICS OF MIGRATION

This section describes how Sprite deals with the various components of process state
during migration. The solution for each component consists of some combination of
transferring state and arranging for forwarding.

Virtual memory transfer

Virtual memory transfer is the aspect of migration that has been discussed the
most in the literature, perhaps because it is generally believed to be the limiting
factor in the speed of migration. 17 One simple method for transferring virtual memory
is to send the process’s entire memory image to the target machine at migration
time, as in Charlotte 9 and LOCUS.5 This approach is simple but it has two disadvan-
tages. First, the transfer can take many seconds, during which time the process is
frozen: it cannot execute on either the source or destination machine. For some
processes, particularly those with real-time needs, long freeze times may be unaccept-
able. The second disadvantage of a monolithic virtual memory transfer is that it may
result in wasted work for portions of the virtual memory that are not used by the
process after it migrates. The extra work is particularly unfortunate (and costly) if
it requires old pages to be read from secondary storage. For these reasons, several
other approaches have been used to reduce the overhead of virtual memory transfer;
the mechanisms are diagramed in Figure 1 and described in the paragraphs below.

In the V system, long freeze times could have resulted in time-outs for processes
trying to communicate with a migrating process. To address this problem, Theimer
used a method called pre-copying. 3,8 Rather than freezing a process at the beginning
of migration, V allows the process to continue executing while its address space is
transferred. In the original implementation of migration in V, the entire memory
of the process was transferred directly to the target; Theimer also proposed an
implementation that would use virtual memory to write modified pages to a shared
‘backing storage server’ on the network. In either case, some pages could be modified
on the source machine after they have been copied elsewhere, so V then freezes the
process and copies the pages that have been modified. Theimer showed that pre-
copying reduces freeze times substantially. However, it has the disadvantage of
copying some pages twice, which increases the total amount of work to migrate a
process. Pre-copying seems most useful in an environment like V where processes
have real-time response requirements.

The Accent system uses a lazy copying approach to reduce the cost of process
migration. 4,17 When a process migrates in Accent, its virtual memory pages are left
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scheme used in LOCUS
an-d Charlotte, where the entire- address space is copied at the time a process migrates. (b) shows the pre-
copying scheme used in V, where the virtual memory is transferred duirng migration but the process
continues to execute during most of the transfer. (c) shows Accent’s lazy-copying approach, where pages
are retrieved from the source machine as they are referenced on the target. Residual dependencies in
Accent can last for the life of the migrated process. (d) shows Sprite’s approach, where dirty pages are
flushed to a file server during migration and the target retrieves pages from the file server as they are
referenced. In the case of eviction, there are no residual dependencies on the source after migration.
When a process migrates away from its home machine, it has residual dependencies on its home

throughout its lifetime

on the source machine until they are actually referenced on the target machine.
Pages are copied to the target when they are referenced for the first time. This
approach allows a process to begin execution on the target with minimal freeze time
but introduces many short delays later as pages are retrieved from the source
machine. Overall, lazy copying reduces the cost of migration because pages that are
not used are never copied at all. Zayas found that for typical programs only one-
quarter to one-half of a process’s allocated memory needed to be transferred. One
disadvantage of lazy copying is that it leaves residual dependencies on the source
machine: the source must store the unreferenced pages and provide them on demand
to the target. In the worst case, a process that migrates several times could leave
virtual memory dependencies on any or all of the hosts on which it ever executed.

Sprite’s migration facility uses a different form of lazy copying that takes advantage
of our existing network services while providing some of the advantages of lazy
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copying. In Sprite, as in the proposed implementation for V, backing storage for
virtual memory is implemented using ordinary files. Since these backing files are
stored in the network file system, they are accessible throughout the network. During
migration the source machine freezes the process, flushes its dirty pages to backing
files, and discards its address space. On the target machine, the process starts
executing with no resident pages and uses the standard paging mechanisms to load
pages from backing files as they are needed.

In most cases no disk operations are required to flush dirty pages in Sprite. This
is because the backing files are stored on network file servers and the file servers
use their memories to cache recently-used file data. When the source machine flushes
a dirty page it is simply transferred over the network to the server’s main-memory
file cache. If the destination machine accesses the page then it is retrieved from the
cache. Disk operations will only occur if the server’s cache overflows.

Sprite’s virtual memory transfer mechanism was simple to implement because it
uses pre-existing mechanisms both for flushing dirty pages on the source and for
handling page faults on the target. It has some of the benefits of the Accent lazy-
copying approach since only dirty pages incur overhead at migration time; other
pages are sent to the target machine when they are referenced. Our approach will
require more total work than Accent’s, though, since dirty pages may be transferred
over the network twice: once to a file server during flushing, and once later to the
destination machine.

The Sprite approach to virtual memory transfer fits well with the way migration
is typically used in Sprite. Process migration occurs most often during an exec system
call, which completely replaces the process’s address space. If migration occurs
during an exec, the new address space is created on the destination machine so there
is no virtual memory to transfer. As others have observed (e.g. LOCUS 5 ) the
performance of virtual memory transfer for exec -time migration is not an issue.
Virtual memory transfer is an issue, however, when migration is used to evict a
process from a machine whose user has returned. In this situation the most important
consideration is to remove the process from its source machine quickly, in order to
minimize any performance degradation for the returning user. Sprite’s approach
works well in this regard since (a) it does the least possible work to free up the
source’s memory, and (b) the source need not retain pages or respond to later paging
requests as in Accent. It would have been more efficient overall to transfer the dirty
pages directly to the target machine instead of a file server, but this approach would
have added complexity to the migration mechanism, so we decided against it.

Virtual memory transfer becomes much more complicated if the process to be
migrated is sharing writable virtual memory with some other process on the source
machine. In principle, it is possible to maintain the shared virtual memory even after
one of the sharing processes migrates, 18 but this changes the cost of shared accesses
so dramatically that it seemed unreasonable to us. Shared writable virtual memory
almost never occurs in Sprite right now, so we simply disallow migration for processes
using it. A better long-term solution is probably to migrate all the sharing processes
together, but even this may be impractical if there are complex patterns of sharing
that involve many processes.
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Migrating open files

It turned out to be particularly difficult in Sprite to migrate the state associated
with open files. This was surprising to us, because Sprite already provided a highly
transparent network file system that supports remote access to files and devices; it
also allows files to be cached and to be accessed concurrently on different worksta-
tions. Thus, we expected that the migration of file-related information would mostly
be a matter of reusing existing mechanisms. Unfortunately, process migration intro-
duced new problems in managing the distributed state of open files. Migration also
made it possible for a file’s current access position to become shared among several
machines.

The migration mechanism would have been much simpler if we had chosen the
‘arrange for forwarding’ approach for open files instead of the ‘transfer state’
approach. This would have implied that all file-related kernel calls be forwarded
back to the machine where the file was opened, so that the state associated with the
file could have stayed on that machine. Because of the frequency of file-related
kernel calls and the cost of forwarding a kernel call over the network, we felt that
this approach would be unacceptable both because it would slow down the remote
process and because it would load the machine that stores the file state. Sprite
workstations are typically diskless, and files are accessed remotely from file servers,
so the forwarding approach would have meant that each file request would be passed
over the network once to the machine where the file was opened, and possibly a
second time to the server. Instead, we decided to transfer open-file state along with
a migrating process and then use the normal mechanisms to access the file (i.e.
communicate directly with the file’s server).

There are three main components of the state associated with an open file: a file
reference, caching information, and an access position. Each of these components
introduced problems for migration. The file reference indicates where the file is
stored, and also provides a guarantee that the file exists (as required by UNIX
semantics): if a file is deleted while open then the deletion is deferred until the file
is closed. Our first attempt at migrating files simply closed the file on the source
machine and reopened it on the target. Unfortunately, this approach caused files to
disappear if they were deleted before the reopen completed. This is such a common
occurrence in UNIX programs that file transfer had to be changed to move the
reference from source to target without ever closing the file.

The second component of the state of an open file is caching information. Sprite
permits the data of a file to be cached in the memory of one or more machines,
with file servers responsible for guaranteeing ‘consistent access’ to the cached data. 11

The server for a file keeps track of which hosts have the file open for reading and
writing. If a file is open on more than one host and at least one of them is writing
it, then caching is disabled: all hosts must forward their read and write requests for
that file to the server so they can be serialized. In our second attempt at migrating
files, the server was notified of the file’s use on the target machine before being told
that the file was no longer in use on the source; this made the file appear to be
write-shared and caused the server to disable caching for the file unnecessarily. To
solve both this problem and the reference problem above we built special server
code just for migrating files, so that the transfer from source to destination is made
atomically. Migration can still cause caching to be disabled for a file, but only if the
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file is also in use by some other process on the source machine; if the only use is
by the migrating process, then the file will be cacheable on the target machine. In
the current implementation, once caching is disabled for a file, it remains disabled
until no process has the file open (even if all processes accessing the file migrate to
the same machine); however, in practice, caching is disabled infrequently enough
that an optimization to re-enable caching of uncacheable files has not been a high
priority.

When an open file is transferred during migration, the file cache on the source
machine may contain modified blocks for the file. These blocks are flushed to the
file’s server machine during migration, so that after migration the target machine
can retrieve the blocks from the file server without involving the source. This
approach is similar to the mechanism for virtual memory transfer, and thus has the
same advantages and disadvantages. It is also similar to what happens in Sprite for
shared file access without migration: if a file is opened, modified, and closed on one
machine, then opened on another machine, the modified blocks are flushed from
the first machine’s cache to the server at the time of the second open.

The third component of the state of an open file is an access position, which
indicates where in the file the next read or write operation will occur. Unfortunately
the access position for a file may be shared between two or more processes. This
happens, for example, when a process opens a file and then forks a child process:
the child inherits both the open file and the access position. Under normal circum-
stances all of the processes sharing a single access position will reside on the same
machine, but migration can move one of the processes without the others, so that
the access position becomes shared between machines. After several false starts we
eventually dealt with this problem in a fashion similar to caching: if an access position
becomes shared between machines, then neither machine stores the access position
(nor do they cache the file); instead, the file’s server maintains the access position
and all operations on the file are forwarded to the server.

Another possible approach to shared file offsets is the one used in LOCUS. 5 If
process migration causes a file access position to be shared between machines,
LOCUS lets the sharing machines take turns managing the access position. In order
to perform I/O on a file with a shared access position, a machine must acquire the
‘access position token’ for the file. While a machine has the access position token it
caches the access position and no other machine may access the file. The token
rotates among machines as needed to give each machine access to the file in turn.
This approach is similar to the approach LOCUS uses for managing a shared file,
where clients take turns caching the file and pass read and write tokens around to
ensure cache consistency. We chose not to use the Locus approach because the
token-passing approach is more complex than the disable-caching approach, and
because the disable-caching approach meshed better with the existing Sprite file system.

Figure 2 shows the mechanism currently used by Sprite for migrating open files.
The key part of this mechanism occurs in a late phase of migration when the target
machine requests that the server update its internal tables to reflect that the file is
now in use on the target instead of the source. The server in turn calls the source
machine to retrieve information about the file, such as the file’s access position and
whether the file is in use by other processes on the source machine. This two-level
remote procedure call synchronizes the three machines (source, target and server)
and provides a convenient point for updating state about the open file.
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Network

Figure 2. Transferring open files. (1) The source passes information about all open files to the target;(2)
for each file, the target notifies the server that the open file has been moved; (3) during this call the server
communicates again with the source to release its state associated with the file and to obtain the most

recent state associated with the file

The process control block

Aside from virtual memory and open files, the main remaining issue is how to
deal with the process control block (PCB) for the migrating process: should it be
left on the source machine or transferred with the migrating process? For Sprite we
use a combination of both approaches. The home machine for a process (the one
where it would execute if there were no migration) must assist in some operations
on the process, so it always maintains a PCB for the process. The details of this
interaction are described in the next section. In addition, the current machine for a
process also has a PCB for it. If a process is migrated, then most of the information
about the process is kept in the PCB on its current machine; the PCB on the home
machine serves primarily to locate the process and most of its fields are unused.

The other elements of process state besides virtual memory and open files are
much easier to transfer than virtual memory and open files, since they are not as
bulky as virtual memory and they do not involve distributed state such as open files.
At present the other state consists almost entirely of fields from the process control
block. In general, all that needs to be done is to transfer these fields to the target
machine and reinstate them in the process control block on the target.

SUPPORTING TRANSPARENCY: HOME MACHINES

As was mentioned previously, transparency was one of our most important goals in
implementing migration. By ‘transparency’ we mean two things in particular. First,
a process’s behaviour should not be affected by migration. Its execution environment
should appear the same, it should have the same access to system resources such as
files and devices, and it should produce exactly the same results as it if had not
migrated. Secondly, a process’s appearance to the rest of the world should not be
affected by migration. To the rest of the world the process should appear as if it
never left its original machine, and any operation that is possible on an unmigrated
process (such as stopping or signaling) should be possible on a migrated process.
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Sprite provides both of these forms of transparency; we know of no other implemen-
tation of process migration that provides transparency to the same degree.

In Sprite the two aspects of transparency are defined with respect to a process’s
home machine, which is the machine where it would execute if there were no
migration at all. Even after migration, everything should appear as if the process
were still executing on its home machine. In order to achieve transparency, Sprite
uses four different techniques, which are described in the paragraphs below.

The most desirable approach is to make kernel calls location-independent; Sprite
has been gradually evolving in this direction. For example, in the early versions of
the system we permitted different machines to have different views of the file system
name space. This required open and several other kernel calls to be forwarded home
after migration, imposing about a 20 per cent penalty on the performance of remote
compilations. In order to simplify migration (and for several other good reasons
also), we changed the file system so that every machine in the network sees the
same name space. This made the open kernel call location-independent, so no extra
effort was necessary to make open work transparently for remote processes.

Our second technique was to transfer state from the source machine to the target
at migration time as described above, so that normal kernel calls may be used after
migration. We used the state-transfer approach for virtual memory, open files,
process and user identifiers, resource usage statistics, and a variety of other things.

Our third technique was to forward kernel calls home. This technique was orig-
inally used for a large number of kernel calls, but we have gradually replaced most
uses of forwarding with transparency or state transfer. At present there are only a
few kernel calls that cannot be implemented transparently and for which we cannot
easily transfer state. For example, clocks are not synchronized between Sprite
machines, so for remote processes Sprite forwards the gettimeofday kernel call back
to the home machine. This guarantees that time advances monotonically even for
remote processes, but incurs a performance penalty for processes that read the time
frequently. Another example is the getpgrp kernel call, which obtains state about
the ‘process group’ of a process. The home machine maintains the state that groups
collections of processes together, since they may physically execute on different
machines.

Forwarding also occurs from the home machine to a remote process’s current
machine. For example, when a process is signalled (e.g. when some other process
specifies its identifier in the kill kernel call), the signal operation is sent initially to
the process’s home machine. If the process is not executing on the home machine,
then the home machine forwards the operation on to the process’s current machine.
The performance of such operations could be improved by retaining a cache on each
machine of recently-used process identifiers and their last known execution sites.
This approach is used in LOCUS and V and allows many operations to be sent
directly to a remote process without passing through another host. An incorrect
execution site is detected the next time it is used and correct information is found
by sending a message to the host on which the process was created (LOCUS) or by
multi-casting (V).

The fourth ‘approach’ is really just a set of ad hoc techniques for a few kernel
calls that must update state on both a process’s current execution site and its home
machine. One example of such a kernel call is fork, which creates a new process.
Process identifiers in Sprite consist of a home machine identifier and an index of a
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process within that machine. Management of process identifiers, including allocation
and deallocation, is the responsibility of the home machines named in the identifiers.
If a remote process forks, the child process must have the same home machine as
the parent, which requires that the home machine allocate the new process identifier.
Furthermore, the home machine must initialize its own copy of the process control
block for the process, as described previously. Thus, even though the child process
will execute remotely on the same machine as its parent, both its current machine
and its home machine must update state. Similar kinds of co-operation occur for exit,
which is invoked by a process to terminate itself, and wait, which is used by a parent
to wait for one of its children to terminate. There are several potential race conditions
between a process exiting, its parent waiting for it to exit, and one or both processes
migrating; we found it easier to synchronize these operations by keeping all the state
for the wait-exit rendezvous on a single machine (the home). LOCUS similarly uses
the site on which a process is created to synchronize operations on the process.

RESIDUAL DEPENDENCIES

We define a residual dependency as an ongoing need for a host to maintain data
structures or provide functionality for a process even after the process migrates away
from the host. One example of a residual dependency occurs in Accent, where a
process’s virtual memory pages are left on the source machine until they are refer-
enced on the target. Another example occurs in Sprite, where the home machine
must participate whenever a remote process forks or exits.

Residual dependencies are undesirable for three reasons: reliability, performance
and complexity. Residual dependencies decrease reliability by allowing the failure
of one host to affect processes on other hosts. Residual dependencies decrease
performance for the remote process because they require remote operations where
local ones would otherwise have sufficed. Residual dependencies also add to the
load of the host that is depended upon, thereby reducing the performance of other
processes executing on that host. Lastly, residual dependencies complicate the system
by distributing a process’s state around the network instead of concentrating it on a
single host; a particularly bad scenario is one where a process can migrate several
times, leaving residual dependencies on every host it has visited.

Despite the disadvantages of residual dependencies, it may be impractical to
eliminate them all. In some cases dependencies are inherent, such as when a process
is using a device on a specific host; these dependencies cannot be eliminated without
changing the behaviour of the process. In other cases, dependencies are necessary
or convenient to maintain transparency, such as the home machine knowing about
all process creations and terminations. Lastly, residual dependencies may actually
improve performance in some cases, such as lazy copying in Accent, by deferring
state transfer until it is absolutely necessary.

In Sprite we were much more concerned about transparency than about reliability,
so we permitted some residual dependencies on the home machine where those
dependencies made it easier to implement transparency. As described above in the
section on transparency, there are only a few situations where the home machine must
participate so the performance impact is minimal. Measurements of the overhead of
remote execution are reported below.

Although Sprite permits residual dependencies on the home machine, it does not
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leave dependencies on any other machines. If a process migrates to a machine and
is then evicted or migrates away for any other reason, there will be no residual
dependencies on that machine. This provides yet another assurance that process
migration will not affect users’ response when they return to their workstations. The
only noticeable long-term effect of foreign processes is the resources they may have
used during their execution: in particular, the user’s virtual memory working set
may have to be demand-paged back into memory upon the user’s return.

The greatest drawback of residual dependencies on the home machine is the
inability of users to migrate processes in order to survive the failure of their home
machine. We are considering a non-transparent variant of process migration, which
would change the home machine of a process when it migrates and break all
dependencies on its previous host.

MIGRATION POLICIES

Until now we have focused our discussion on the mechanisms for transferring
processes and supporting remote execution. This section considers the policies that
determine how migration is used. Migration policy decisions fall into four categories:

1. What. Which processes should be migrated? Should all processes be considered
candidates for migration, or only a few particularly CPU-intensive processes?
How are CPU-intensive processes to be identified?

2. When. Should processes only be migrated at the time they are initiated, or may
processes also be migrated after they have been running?

3. Where. What criteria should be used to select the machines that will be the
targets of migration?

4. Who. Who makes all of the above decisions? How much should be decided by
the user and how much should be automated in system software?

At one end of the policy spectrum lies the pool of processors model. In this model
the processors of the system are treated as a shared pool and all of the above
decisions are made automatically by system software. Users submit jobs to the
system without any idea of where they will execute. The system assigns jobs to
processors dynamically, and if process migration is available it may move processes
during execution to balance the loads of the processors in the pool. MOSIX 6 is one
example of the ‘pool of processors’ model: processors are shared equally by all
processes and the system dynamically balances the load throughout the system, using
process migration.

At the other end of the policy spectrum lies rsh, which provides no policy support
whatsoever. In this model individual users are responsible for locating idle machines,
negotiating with other users over the use of those machines, and deciding which
processes to offload.

For Sprite we chose an intermediate approach where the selection of idle hosts is
fully automated but the other policy decisions are only partially automated. There
were two reasons for this decision. First, our environment consists of personal
workstations. Users are happy running almost all of their processes locally on their
own personal workstations, and they expect to have complete control of their
workstations. Users do not think of their workstations as ‘shared’. Secondly, the
dynamic pool-of-processors approach appeared to us to involve considerable
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additional complexity, and we were not convinced that the benefits would justify
the implementation difficulties. For example, most processes in a UNIX-like environ-
ment are so short-lived that migration will not produce a noticeable benefit and may
even slow things down. Eager et al. provide additional evidence that migration is
only useful under particular conditions.

19 Thus, for Sprite we decided to make
migration a special case rather than the normal case.

The Sprite kernels provide no particular support for any of the migration policy
decisions, but user-level applications provide assistance in four forms: idle-host
selection, the pmake program, a mig shell command, and eviction. These are discussed
in the following subsections.

Selecting idle hosts

Each Sprite machine runs a background process called the load-average daemon,
which monitors the usage of that machine. When the workstation appears to be idle,
the load-average daemon notifies the central migration server that the machine is
ready to accept migrated processes. Programs that invoke migration, such as pmake
and mig described below, call a standard library procedure Mig_RequestldleHosts to
obtain the identifiers for one or more idle hosts, which they then pass to the kernel
when they invoke migration. Normally only one process may be assigned to any host
at any one time, in order to avoid contention for processor time; however, processes
that request idle hosts can indicate that they will be executing long-running processes
and the central server will permit shorter tasks to execute on those hosts as well.

Maintaining the database of idle hosts can be a challenging problem in a distributed
system, particularly if the system is very large in size or if there are no shared
facilities available for storing load information. A number of distributed algorithms
have been proposed to solve this problem, such as disseminating load information
among hosts periodically, 6 querying other hosts at random to find an idle one, 20 or
multicasting and accepting a response from any host that indicates availability. 8

In Sprite we have used centralized approaches for storing the idle-host database.
Centralized techniques are generally simpler, they permit better decisions by keeping
all the information up-to-date in a single place, and they can scale to systems with
hundreds of workstations without contention problems for the centralized database.

We initially stored the database in a single file in the file system. The load-average
daemons set flags in the file when their hosts became idle, and the Mig_Requestldle-
Hosts library procedure selected idle hosts at random from the file, marking the
selected hosts so that no one else would select them. Standard file-locking primitives
were used to synchronize access to the file.

We later switched to a server-based approach, where a single server process
keeps the database in its virtual memory. The load-average daemons and the Mig_
RequestIdleHosts procedure communicate with the server using a message protocol.
The server approach has a number of advantages over the file-based approach. It is
more efficient, because only a single remote operation is required to select an idle
machine; the file-based approach required several remote operations to open the
file, lock it, read it, etc. The server approach makes it easy to retain state from
request to request; we use this, for example, to provide fair allocation of idle hosts
when there are more would-be users than idle machines. Although some of these
features could have been implemented with a shared file, they would incur a high
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overhead from repeated communication with a file server. Lastly, the server approach
provides better protection of the database information (in the shared-file approach
the file had to be readable and writable by all users).

We initially chose a conservative set of criteria for determining whether a machine
is ‘idle’. The load-average daemon originally considered a host to be idle only if (a)
it had had no keyboard or mouse input for at least five minutes, and (b) there were
fewer runnable processes than processors, on average. In choosing these criteria we
wanted to be certain not to inconvenience active users or delay background processes
they might have left running. We assumed that there would usually be plenty of idle
machines to go around, so we were less concerned about using them efficiently.
After experience with the five-minute threshold, we reduced the threshold for input
to 30 seconds; this increased the pool of available machines without any noticeable
impact on the owners of those machines.

pmake and Mig

Sprite provides two convenient ways to use migration. The most common use of
process migration is by the pmake program. pmake is similar in function to the make
UNIX utility 7 and is used, for example, to detect when source files have changed
and recompile the corresponding object files. Make performs its compilations and
other actions serially; in contrast, pmake uses process migration to invoke as many
commands in parallel as there are idle hosts available. This use of process migration
is completely transparent to users and results in substantial speed-ups in many
situations, as shown below. Other systems besides Sprite have also benefitted from
parallel make facilities; see References  21 and 2 for examples.

The approach used by pmake has at least one advantage over a fully-automatic
‘processor pool’ approach where all the migration decisions are made centrally.
Because pmake makes the choice of processes to offload, and knows how many hosts
are available, it can scale its parallelism to match the number of idle hosts. If the
offloading choice were made by some other agent, pmake might overload the system
by creating more processes than could be accommodated efficiently. pmake also
provides a degree of flexibility by permitting the user to specify that certain tasks
should not be offloaded if they are poorly suited for remote execution.

The second easy way to use migration is with a program called mig, which takes
as argument a shell command. Mig will select an idle machine using the mechanism
described above and use process migration to execute the given command on that
machine. Mig may also be used to migrate an existing process.

Eviction

The final form of system support for migration is eviction. The load-average
daemons detect when a user returns. On the first keystroke or mouse-motion invoked
by the user, the load-average daemon will check for foreign processes and evict
them. When an eviction occurs, foreign processes are migrated back to their home
machines, and the process that obtained the host is notifed that the host has been
reclaimed. That process is free to remigrate the evicted processes or to suspend
them if there is no new host available. To date, pmake is the only application
that automatically remigrate processes, but other applications (such as mig) could
remigrate processes as well.
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Evictions also occur when a host is reclaimed from one process in order to allocate
it to another. If the centralized server receives a request for an idle host when no
idle hosts are available, and one process has been allocated more than its fair share
of hosts, the server reclaims one of the hosts being used by that process. It grants
that host to the process that had received less than its fair share. The process that
lost the host must reduce its parallelism until it can obtain additional hosts again.

A possible optimization for evictions would be to permit an evicted process to
migrate directly to a new idle host rather than to its home machine. In practice, half
of the evictions that occur in the system take place due to fairness considerations

22 Permitting directrather than because a user has returned to an idle workstation.
migration between two remote hosts would benefit the other half of the evictions
that occur, but would complicate the implementation: it would require a three-way
communication between the two remote hosts and the home machine, which always
knows where its processes execute. Thus far, this optimization has not seemed to
be warranted.

PERFORMANCE AND USAGE PATTERNS

We evaluated process migration in Sprite by taking three sets of measurements. The
next subsections discuss particular operations in isolation, such as the time to migrate
a trivial process or invoke a remote command; the performance improvement of
pmake using parallel remote execution; and empirical measurements of Sprite’s
process migration facility over a period of several weeks, including the extent to
which migration is used, the cost and frequency of eviction, and the availability of
idle hosts.

Migration overhead

Table I summarizes the costs associated with migration. Host selection on
SPARCstation 1 workstations takes an average of 36 ms. Process transfer is a
function of some fixed overhead, plus variable overhead in proportion to the number
of modified virtual memory pages and file blocks copied over the network and the
number of files the process has open. If a process execs at the time of migration, as
is normally the case, no virtual memory is transferred.

The costs in Table I reflect the latency and bandwidth of Sprite’s remote procedure
call mechanism. For example, the cost of transferring open files is dominated by
RPC latency (three RPCS at 1 ms latency each), and the speed of transferring virtual
memory pages and file blocks is determined by RPC bandwidth (480–660 Kbytes/s).
All things considered, it takes about a tenth of a second to select an idle host and
start a new process on it, not counting any time needed to transfer open files or
flush modified file blocks to servers. Empirically, the average time to perform an
exec -time migration in our system is about 330 ms.

22 This latency may be too great
to warrant running trivial programs remotely, but it is substantially less than the
time needed to compile typical source programs, run text formatters, or do any
number of other CPU-bound tasks.

After a process migrates away from its home machine, it may suffer from the
overhead of forwarding system calls. The degradation due to remote execution
depends on the ratio of location-dependent system calls to other operations, such as
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Table I. Costs associated with process migration. All measurements were performed on SPARCstation 1
workstations. Host selection may be amortized across several migrations if applications such as pmake
reuse idle hosts. The time to migrate a process depends on how many open files the process has and
how many modified blocks for those tiles are cached locally (these must be flushed to the server). If
the migration is not done at exec time, modified virtual memory pages must be flushed as well. If done
at exec time, the process’s arguments and environment variables are transferred. The execs were
performed with no open files. The bandwidth of the RPC system is 480 Kbytes/s using a single channel,

and 660 Kbytes/s using multiple RPC connections in parallel for the virtual memory system

Action

Select and release idle host

Migrate ‘null’ process
Transfer info for open files
Flush modified file blocks
Flush modified pages
Transfer exec arguments

Fork, exec null process with migration, wait for child to exit
Fork, exec null process locally, wait for child to exit

Time/Rate

36 ms

76 ms
9·4 ins/tile
480 Kbytes/s
660 Kbytes/s
480 Kbytes/s

81 ms
46 ms

computation and file I/O. Figure 3 shows the total execution time to run several
programs, listed in Table II, both entirely locally and entirely on a single remote
host. Applications that communicate frequently with the home machine suffered
considerable degradation. Two of the benchmarks, fork and gettime, are contrived
examples of the type of degradation a process might experience if it performed
many location-dependent system calls without much user-level computation. The rcp
benchmark is a more realistic example of the penalties processes can encounter: it
copies data using TCP, and TCP operations are sent to a user-level TCP server on
the home machine. Forwarding these TCP operations causes rcp to perform about
40 per cent more slowly when run remotely than locally. As may be seen in
Figure 3, however, applications such as compilations and text formatting show little
degradation due to remote execution.

Application performance

The benchmarks in the previous section measured the component costs of
migration. This section measures the overall benefits of migration using pmake. We
measured the performance improvements obtained by parallel compilations and
simulations.

The first benchmark consists of compiling 276 Sprite kernel source files, then
linking the resulting object files into a single file. Each pmake command (compiling
or linking) is performed on a remote host using exec -time migration. Once a host is
obtained from the pool of available hosts, it is reused until pmake finishes or the
host is no longer available.

Figure 4 shows the total elapsed time to compile and link the Sprite kernel using
a varying number of machines in parallel, as well as the performance improvement
obtained. In this environment pmake is able to make effective use of about three-
quarters of each host it uses up to a point (4–6 hosts), but it uses only half the
processing power available to it once additional hosts are used.
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Figure 3. Comparison between local and remote execution of programs. The elapsed time to execute
CPU-intensive and file-intensive applications such as pmake and LATEX showed negligible effects from
remote execution (3 and 1 per cent degradation, respectively). Other applications suffered performance

penalties ranging from 42 per cent (rcp), to 73 per cent (fork), to 3200 per cent (gettime)

Table II. Workload for comparisons between local and remote execution

Name Description

pmake recompile pmake source sequentially using pmake
LATEX run LATEX on a draft of this article
rcp copy a 1 Mbyte file to another host using TCP
fork fork and wait for child, 1000 times
gettime get the time of day 10,000 times

The ‘compile and link’ curve in Figure 4(b) shows a speed-up factor of 5 using 12
hosts. Clearly, there is a significant difference between the speed-ups obtained for
the ‘normalized compile’ benchmark and the ‘compile and link’ benchmark. The
difference is partly attributable to the sequential parts of running pmake: determining
file dependencies and linking object files all must be done on a single host. More
importantly, file caching affects speed-up substantially. As described above, when a
host opens a file for which another host is caching modified blocks, the host with
the modified blocks transfers them to the server that stores the file. Thus, if pmake
uses many hosts to compile different files in parallel, and then a single host links
the resulting object files together, that host must wait for each of the other hosts to
flush the object files they created. It must then obtain the object files from the
server. In this case, linking the files together when they have all been created on a
single host takes only 56 s, but the link step takes 65–69 s when multiple hosts are
used for the compilations.
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Figure 4. Performance of recompiling the Sprite kernel using a varying number of hosts and the pmake
program. Graph (a) shows the time to compile all the input files and then link the resulting object files
into a single file. In addition, it shows a ‘normalized’ curve that shows the time taken for the compilation
only, deducting as well the pmake start-up overhead of 19 s to determine dependencies; this curve
represents the parellelizable portion of the pmake benchmark. Graph (b) shows the speed-up obtained
for each point in (a), which is the ratio between the time taken on a single host and the time using

multiple hosts in parallel

In practice, we do not even obtain the fivefold speed-up indicated by this bench-
mark, because we compile and link each kernel module separately and link the
modules together afterwards. Each link step is an additional synchronization point
that may be performed by only one host at a time. In our development environment,
we typically see three to four times speed-up when rebuilding a kernel from scratch.
Table III presents some examples of typical pmake speed-ups. These times are
representative of the performance improvements seen in day-to-day use. Figure 5
shows the corresponding speed-up curves for each set of compilations when the
number of hosts used varies from 1 to 12. In each case, the marginal improvement
of additional hosts decreases as more hosts are added.

The speed-up curves in Figure 4(b) and Figure 5 show that the marginal improve-
ment from using additional hosts is significantly less than the processing power of
the hosts would suggest. The poor improvement is due to bottlenecks on both the
file server and the workstation running pmake. Figure 6 shows the utilization of the
processors on the file server and client workstation over 5 s intervals during the 12-
way kernel pmake. It shows that the pmake process uses nearly 100 per cent of a
SPARCstation processor while it determines dependencies and starts to migrate
processes to perform compilations. Then the Sun-4/280 file server’s processor
becomes a bottleneck as the 12 hosts performing compilations open files and write
back cached object files. The network utilization, also shown in Figure 6, averaged
around 20 per cent and is thus not yet a problem. However, as the server and client
processors get faster, the network may easily become the next bottleneck.

Though migration has been used in Sprite to perform compilations for nearly two
years, it has only recently been used for more wide-ranging applications. Excluding
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Figure 5. Speed-up of compilations using a variable number of hosts. This graph shows the speed-up
relative to running pmake on one host (i.e. without migration). The speed-up obtained depends on the
extent that hosts can be kept busy, the amount of parallelization available to pmake and system bottlenecks

Table III. Examples of pmake performance. Sequential execution is done on a single host; parallel
execution uses migration to execute up to 12 tasks in parallel. Each measurement gives the time to
compile the indicated number of files and link the resulting object files together in one or more steps.
When multiple steps are required, their sequentiality reduces the speed-up that may be obtained;
pmake, for example, is organized into two directories that are compiled and linked separately, and then

the two linked object files are linked together

Program Number of Sequential time Parallel time
files

Speed-up
links

1
gremlin 24 1 180 41 4·43
TEX 36 259 48 5·42
pmake 49 3 162 55 2·95
kernel 276 1 1971 453 4·35

compilations, simulations are the primary application for Sprite’s process migration
facility. It is now common for users to use pmake to run up to one hundred
simulations, letting pmake control the parallelism. The length and parallelism of
simulations results in more frequent evictions than occur with most compilations,
and pmake automatically remigrate or suspends processes subsequent to eviction.

In addition to having a longer average execution time, simulations also sometimes
differ from compilations in their use of the file system. Whereas some simulators
are quite I/O intensive, others are completely limited by processor time. Because
they perform minimal interaction with file servers and use little network bandwidth,
they can scale better than parallel compilations do. One set of simulations obtained
over 800 per cent effective processor utilization—eight minutes of processing time
per minute of elapsed time—over the course of an hour, using all idle hosts on the
system (up to 10–15 hosts of the same architecture).
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Figure 6. Processor and network utilization during the 12-way pmake. Both the file server and the client
workstation running pmake were saturated

Usage patterns

We instrumented Sprite to keep track of remote execution, migrations, evictions
and the availability of idle hosts. First, when a process exited, the total time during
which it executed was added to a global counter; if the process had been executing
remotely, its time was added to a separate counter as well. (These counters therefore
excluded some long-running processes that did not exit before a host rebooted;
however, these processes were daemons, display servers and other processes that
would normally be unsuitable for migration. ) Over a typical one-month period,
remote processes accounted for about 31 per cent of all processing done on Sprite.
One host ran applications that made much greater use of remote execution, executing
as much as 88 per cent of user cycles on other hosts. Table IV lists some sample
processor usage over this period.

During the same time frame, we recorded the frequency of exec -time migrations and
full migrations in order to determine the most common usage of the migration facility.
Since full migrations require that virtual memory be copied, the choice of a virtual
memory transfer method would be important if full migrations occurred relatively
often. In the one-month period studied, exec -time migrations occurred at a rate of
1·76/hour/host over that period, constituting 86 per cent of all migrations.
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Table IV. Remote processing use over a one-month period. The ten hosts with the
greatest total processor usage are shown individually. Sprite hosts performed roughly
30 per cent of user activity using process migration. The standard deviation of the

fraction of remote use was 25 per cent

Host Total CPU time Remote CPU time Fraction remote

garlic 314,218 sees 228,641 sees 72·77%
crackle 172,355 14,451 8·38%
sassafras 158,515 138,821 87·58%
burble 151,117 2,352 1·56%
vagrancy 107,853 81,343 75·42%
buzz 96,402 ,260 0·27%
sage 92,063 32,525 35 ·33%
kvetching 91,611 26,765 29·22%
jaywalk 75,394 24,017 31·86%
joyride 58,231 6,233 l0·70%
Others 857,532 120,727 14·1%
Total 2;175,291 676,135 31·08%

Secondly, we recorded each time a host changed from idle to active, indicating
that foreign processes would be evicted if they exist, and we counted the number of
times evictions actually occurred. To date, evictions have been extremely rare. On
the average, each host changed to the active state only once every 26 rein, and very
few of these transitions actually resulted in processes being evicted (0·12 processes
per hour per host in a collection of more than 25 hosts). The infrequency of evictions
has been due primarily to the policy used for allocating hosts: hosts are assigned in
decreasing order of idle time, so that the hosts that have been idle the longest are
used most often for migration. The average time that hosts had been idle prior to
being allocated for remote execution was 17 h, but the average idle time of those
hosts that later evicted processes was only 4 min. (One may therefore assume that
if hosts were allocated randomly, rather than in order of idle time, evictions would
be considerably more frequent. ) Finally, when evictions did occur, the time needed
to evict varied considerably, with a mean of 3·0 s and a standard deviation of 3·1 s
to migrate an average of 3·3 processes. An average of 37 4-Kbyte pages were written
per process that migrated, with a standard deviation of 6·5 from host to host.

Thirdly, over the course of over a year, we periodically recorded the state of every
host (active, idle or hosting foreign processes) in a log file. A surprisingly large
number (66–78 per cent) of hosts are available for migration at any time, even
during the day on weekdays. This is partly due to our environment, in which several
users own both a Sun and a DECstation and use only one or the other at a time.
Some workstations are available for public use and are not used on a regular basis.
However, after discounting for extra workstations, we still find a sizable fraction of
hosts available, concurring with Theimer, Nichols, and others. Table V summarizes
the availability of hosts in Sprite over this period.

To further study the availability of idle hosts, we recorded information about
requests for idle hosts over a 25-day period. During this period, over 17,000 processes
requested one or more idle hosts, and 86 per cent of those processes obtained as
many hosts as they requested. Only 2 per cent of processes were unable to obtain
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Table V. Host availability (per cent). Weekdays are
Monday to Friday from 9:00 a.m. to 5:00 p.m. Off-

hours are all other times

Time frame In use Idle In use for
migration

Weekdays 31 66 3
Off-hours 20 78 2
Total 23 75 2

any hosts at all. Processes requested an average of 2·6 hosts, with a standard
deviation of 4·58 hosts and 76 per cent of processes requesting at most one host at
a time. Since there were typically 10 or more idle machines available for each
machine type, one would expect processes that request few hosts to be able to obtain
them; more interestingly, however, over 80 per cent of those hosts requesting at
least 10 hosts were able to obtain 10 hosts. Figure 7 shows the fraction of processes
during this period that received as many hosts as requested, as a cumulative function
of the number of hosts requested.

Observations

Based on our experience, as well as those of others (V, 8 Charlotte 9 and Accent 17,
we have observed the following:

1. The overall improvement from using idle hosts can be substantial, depending
upon the degree of parallelism in an application.

2. Remote execution currently accounts for a sizeable fraction of all processing
on Sprite. Even so, idle hosts are plentiful. Our use of idle hosts is currently
limited more by a lack of applications (other than pmake) than by a lack of
hosts.

3. The cost of exec -time migration is high by comparison to the cost of local
process creation, but it is relatively small compared to times that are noticeable
by humans. Furthermore, the overhead of providing transparent remote
execution in Sprite is negligible for most classes of processes. The system may
therefore be liberal about placing processes on other hosts at exec time, as
long as the likelihood of eviction is relatively low.

4. The cost of transferring a process’s address space and flushing modified file
blocks dominates the cost of migrating long-running processes, thereby limiting
the effectiveness of a dynamic ‘pool of processors’ approach. Although there
are other environments in which such an approach could have many favorable
aspects, given our assumptions above about host availability and workstation
‘ownership’, using process migration to balance the load among all Sprite hosts
would likely be both unnecessary and undesirable.

HISTORY AND EXPERIENCE

The greatest lesson we have learned from our experience with process migration is
the old adage ‘use it or lose it’. Although an experimental version of migration was
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Figure 7. Distribution of host requests and satisfaction rates. For a given number of hosts, shown on the
X-axis, the line labelled ‘requesting’ shows the fraction of processes that requested at least that many
hosts. The line labelled ‘satisfied’ shows, out of those processes that requested at least that number of
hosts, the fraction of processes that successfully obtained that many hosts. Thus, 98 per cent of all
processes were able to obtain at least one host, and over 80 per cent of processes that requested at least

ten hosts obtained 10 hosts. Only 24 per cent of processes requested more than one host

operational in 1986, 23 it took another two years to make migration a useful utility.
Part of the problem was that a few important mechanisms were not implemented
initially (e.g. there was no automatic host selection, migration was not integrated
with pmake, and process migration did not deal gracefully with machine crashes).
But the main problem was that migration continually broke due to other changes in
the Sprite kernel. Without regular use, problems with migration were not noticed
and tended to accumulate. As a result, migration was only used for occasional
experiments. Before each experiment a major effort was required to fix the accumu-
lated problems, and migration quickly broke again after the experiment was finished.

By the autumn of 1988 we were beginning to suspect that migration was too fragile
to be maintainable. Before abandoning it we decided to make one last push to make
process migration completely usable, integrate it with the pmake program, and use
it for long enough to understand its benefits as well as its drawbacks. This was a
fortunate decision. Within one week after migration became available in pmake,
other members of the Sprite project were happily using it and achieving speed-up
factors of two to five in compilations. Because of its complex interactions with the
rest of the kernel, migration is still more fragile than we would like and it occasionally
breaks in response to other changes in the kernel. However, it is used so frequently
that problems are detected immediately and they can usually be fixed quickly. The
maintenance load is still higher for migration than for many other parts of the kernel,
but only slightly. Today we consider migration to be an indispensable part of the
Sprite system.

We are not the only ones to have had difficulties keeping process migration
running: for example, Theimer reported similar experiences with his implementation
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in V. 8 The problem seems to be inherent in migration, since it interacts with many
other parts of the kernel. In Sprite the most complicated aspects of migration were
those related to migrating open files. In particular, locking and updating the data
structures for an open file on multiple hosts provided numerous opportunities for
distributed deadlocks, race conditions, and inconsistent reference counts. It is worth
reiterating that these problems would have been present even if we had chosen to
implement a ‘simpler’ remote invocation facility without process migration.

CONCLUSIONS

Process migration is now taken for granted as an essential part of the Sprite system.
It is used hundreds of times daily and provides substantial speed-ups for applications
that are amenable to coarse-grain parallel processing, such as compilation and
simulation. The transparency provided by the migration mechanism makes it easy
to use migration, and eviction keeps migration from bothering the people whose
machines are borrowed. Collectively, remote execution accounts for a sizable portion
of all user activity on Sprite.

We were originally very conservative in our use of migration, in order to gain
acceptance among our users. As time has passed, our users have become accustomed
to their workstations being used for migration and they have gained confidence in
the eviction mechanism. We have gradually become more liberal about using idle
machines, and we are experimenting with new system-wide migration tools, such as
command shells that automatically migrate some tasks (e.g. jobs run in background).
So far our users have appreciated the additional opportunities for migration and
have not perceived any degradation in their interactive response.

From the outset we expected migration to be difficult to build and maintain. Even
so, we were surprised at the complexity of the interactions between process migration
and the rest of the kernel, particularly where distributed state was involved as with
open files. It was interesting that Sprite’s network file system both simplified
migration (by providing transparent remote access to files and devices) and compli-
cated it (because of the file system’s complex distributed state). We believe that our
implementation has now reached a stable and maintainable state, but it has taken
us a long time to get there.

For us, the bottom line is that process migration is too useful to pass up. We
encourage others to make process migration available in their systems, but to beware
of the implementation pitfalls.
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