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13.1 Logical Clocks

In last lecture we understood how to synchronize physical clocks on multiple machines. However, regardless
of the algorithm we use, there is always some inaccuracy. One possible solution is to apply logical clocks.

The basic idea is that the message has to be sent before received since the message cannot be received if it
hasnt been sent. When using logical clocks, users are just interested in the ordering of events instead of the
real time of occurrence of every single event. The definition of “event” here depends on the application. In
the programming assignment 1 as an example, an event may be the landing of the bird, the arrival of an
alert message and so on. Its key idea comes from the following facts:

• Clock synchronization need not be absolute

• Synchronizing two machines that do not interact with each other is not necessary

• Processes should just agree on the order of events rather than the time at which they occurred

Now the problem is how to define an ordering of all events in a distributed system without global clock or
synchronized physical local clocks.

13.1.1 Lamport’s Logical Clocks

Leslie Lamport proposed an algorithm with the help of message exchange. Based on the fact that every
message must be sent before received, one can easily order the send/receive event between two processes and
therefore order more relevant events according to “Happened-Before Relation”.

13.1.1.1 Happened-Before Relation

The happened-before relation (denoted by →) describes the order of two events. A → B means event A
happens before B. It is formally defined as:

• Rule 1: if events A and B occur on the same process and A is executed before B, A→ B

• Rule 2: if event A represents the sending of a message and event B is the reception of the same message,
A→ B

The happened-before relation is obviously transitive (∀A,B,C, if A → B and B → C, then A → C). In
addition, one should notice that it gives only a partial order on events. For instance, if two processes do not
change messages, the relation of their events is undefined.
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Figure ?? and ?? illustrate the idea of happened-before relation. Suppose there are two machines M1 and
M2. The program of M1 reads a record (event A) and prints it (event B). As Figure ?? shows, A and B
occur on the same process sequentially, so there exists A → B. However, the relation between (A,C) or
(A,D) is unclear. In Figure ??, one message is passed from M1 to M2. Then relation A→ D becomes true.
And actually one can know that all events before send on M1 happened before all events after recv on M2.
Nevertheless, the relation between B and C is still undefined.

Figure 13.1: H-B Relation Rule 1 Figure 13.2: H-B Relation Rule 2

13.1.1.2 The Algorithm of Lamport’s Clocks

Lamport’s algorithm defines the notion of time of an event. The basic idea of the algorithm is that if a-¿b
then we want the time stamp of A is less than the timestamp of B. But if A and B are concurrent, then we
cannot decide the order of the two events, which means the timestamp of A could be less than, or equal to
or greater than B. The logical timestamp C(A) of an event A is an integer such that:

• If A→ B, C(A) < C(B)

• If A and B are concurrent, C(A) <,= or > C(B)

The algorithm is simple:

• Each process i maintains a logical clock LCi

• Whenever an event occurs locally at i, LCi = LCi + 1

• When i sends a message to j, it “piggybacks” LCi

• When j receives a message from i, LCj = max(LCi, LCj) + 1

Figure ?? gives an example. M1 and M2 maintains two independent logical clocks initially. At time 3 on
M1, one message is passed from M1 to M2. The logical clock of M2 is then set to be greater than both its
own clock and the timestamp of the received message.

13.1.2 Vector Clock

Vector clocks generalize Lamport’s clocks. Lamport’s clocks provides that if A→ B, C(A) < C(B). However,
it cannot guarantee the reverse that if C(A) < C(B), A → B. Vector clocks solve this by using a vector of
logical clocks.
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Figure 13.3: Lamport’s Clocks Figure 13.4: Vector Clocks

13.1.2.1 The Algorithm of Vector Clocks

In vector clocks, the logical timestamp V (A) of an event A is a vector of integers. It guarantees that
(A→ B)⇔ (V (A) < V (B)). The algorithm is similar to the one of Lamport’s clocks:

• Each process i maintains a vector Vi; Vi[i] represents the number of events occurred at i and Vi[j]
means the number of events that i knows have occurred at process j

• Whenever an event occurs locally at i, Vi[i] = Vi[i] + 1

• When i sends a message to j, it “piggybacks” the entire vector Vi

• When j receives a message from i, ∀k, Vj [k] = max(Vj [k], Vi[k]), and then Vj [j] = Vj [j] + 1

One example is illustrated in Figure ??. Every process maintains a vector and only increases its own element
when local event occurs. When M2 receives a message from M1, it updates its own vector and increases its
own element by one. It is obvious in the figure that A→ B if and only if V (A) < V (B).

13.1.2.2 Causal Delivery

One application of vector clocks is to provide causal delivery. The causality relation “A → B” means A is
causally related to B, which is similar to happened-before relation. Causal delivery is a property guarantees
that (send(m)→ send(n))⇒ (deliver(m)→ deliver(n)), where m and n are messages.

Causal delivery order is useful in totally-ordered multicasting cases. Suppose there is a distributed database
for a bank. Its two replicas M and N are at different locations. Now an update m comes to M and another
update n comes to N . All updates should be multicasted and applied on both M and N . However, because
of network latency, M receives m first while N receives n first. This may cause inconsistency when the
ordering matters. For example, m is “deduct 100 dollars from Bob’s account” and n is “add the monthly
interest to Bob’s account”. There will be no problem if causal delivery of m and n can be guaranteed.

Figure ?? illustrates how vector clocks provide causal delivery. P0 broadcasts message m at V C0 = (1, 0, 0)
first. After m reaches P1, P1 updates its vector clock and then broadcasts another message m∗ at V C1 =
(1, 1, 0). P2 may be close to P1 and receives m∗ before m comes. Then P2 checks the timestamp V (m∗) =
(1, 1, 0) and notices there should be another message from P1 on the way, because the first element of V (m∗)
is 1 which is greater than the first element of its own vector clock V C2 = (0, 0, 0). So it holds m∗ until it
receives m, which guarantees causal delivery.
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Figure 13.5: Vector Clocks in Causal Delivery

13.2 Distributed Snapshot Algorithm

Distributed snapshot of a distributed system is important in many applications such as failure recovery,
distributed deadlock detection and so on. It captures a consistent global state of the system, which includes
local state of each process and messages that are sent but not received.

Figure 13.6: Consistent State Figure 13.7: Inconsistent State

Figure ?? and ?? show a consistent state and an inconsistent state. The dashed lines are “cuts” indicates the
time each process capture its local state. In the consistent state, all messages are either completely before
the cut or sent before the cut. In the inconsistent state, one message m2 is received before the cut, but sent
after the cut. It will cause problems when the system is recovered from the cut because P2 will resend the
message m2 and impact P3 again, even though P3’s local state has already be impacted before the cut.

The detailed algorithm will be introduced in next lecture.


