Computing Parable

* The Lion and the Fox

Courtesy: S. Keshav

CS677: Distributed OS Lecture 6, page 1

Computer Science

Case Study: PlanetLab

User-assigned Priviliged management
virtual machines virtual machines

$58001d
$58001d
$$8001d
§S800.1d
$58001d
$58001d
$59001d
$59001d
$59001d
$59001d

Vserver Vserver Vserver Vserver Vserver

Linux enhanced operating system

Hardware

* Distributed cluster across universities
— Used for experimental research by students and faculty in
networking and distributed systems

» Uses a virtualized architecture

— Linux Vservers
— Node manager per machine
— Obtain a “slice” for an experiment: slice creation service

Computer Science Lecture 4, page 2

Code and Process Migration

Motivation

How does migration occur?

Resource migration

Agent-based system

Details of process migration

: omputer Science CS677: Distributed OS Lecture 6, page 3

Motivation

« Key reasons: performance and flexibility

 Process migration (aka strong mobility)

— Improved system-wide performance — better utilization of
system-wide resources

— Examples: Condor, DQS

« Code migration (aka weak mobility)

— Shipment of server code to client — filling forms (reduce
communication, no need to pre-link stubs with client)

— Ship parts of client application to server instead of data from
server to client (e.g., databases)

— Improve parallelism — agent-based web searches

5 Compufer Science CS677: Distributed OS Lecture 6, page 4

Motivation

- Flexibility
— Dynamic configuration of distributed system
— Clients don’t need preinstalled software — download on demand

2. Client and server
communicate

J Server

o

N\ |

1. Client fetches code

Client

/

Service-specific
client-side code

Code repository

Compufgr Science CS677: Distributed OS Lecture 6, page 5

Migration models

Process = code seg + resource seg + execution seg

Weak versus strong mobility
— Weak => transferred program starts from initial state

Sender-initiated versus receiver-initiated

Sender-initiated
— migration initiated by machine where code resides
* Client sending a query to database server
— Client should be pre-registered
Receiver-initiated
— Migration initiated by machine that receives code
— Java applets

— Receiver can be anonymous
Compufer Science CS677: Distributed OS Lecture 6, page 6

Who executes migrated entity?

* Code migration:

— Execute in a separate process

— [Applets] Execute in target process
* Process migration

— Remote cloning

— Migrate the process

Compufer Science CS677: Distributed OS Lecture 6, page 7

Models for Code Migration

Execute at
Sender-initiated _— target process
mobility . Execute in

. separate process
Weak mobility

Execute at
Receiver-initiated — target process

mobility . Execute in

separate process
Mobility mechanism

Migrate process
Sender-initiated _— g P

mobility
T~ Clone process
Strong mobility

Migrate process
Receiver-initiated — 9 P

mobility ~_

Clone process

Compufer Science CS677: Distributed OS Lecture 6, page 8

Do Resources Migrate?

» Depends on resource to process binding
— By identifier: specific web site, ftp server
— By value: Java libraries
— By type: printers, local devices

* Depends on type of “attachments”
— Unattached to any node: data files
— Fastened resources (can be moved only at high cost)
» Database, web sites
— Fixed resources
* Local devices, communication end points

Compufer Science CS677: Distributed OS Lecture 6, page 9

Resource Migration Actions

Resource-to machine binding

Unattached Fastened Fixed
Process-to-| By identifier MV (or GR) GR (or MV) GR
resource| By value CP (or MV, GR) GR (or CP) GR
binding| By type RB (or GR, CP) RB (or GR, CP) RB (or GR)

» Actions to be taken with respect to the references to local resources
when migrating code to another machine.

* GR: establish global system-wide reference

* MYV: move the resources

« CP: copy the resource

* RB: rebind process to locally available resource

Compufer Science CS677: Distributed OS Lecture 6, page 10

Migration in Heterogeneous Systems

« Systems can be heterogeneous (different architecture, OS)
— Support only weak mobility: recompile code, no run time information

— Strong mobility: recompile code segment, transfer execution segment
[migration stack]

— Virtual machines - interpret source (scripts) or intermediate code [Java]

Push marshalled

Local stack procedure call onto
T operations B migration stack P
// T / [Local
/ Procedure B \< / variables B
.
Return label
//%} T,/ empo
Call from /, Local Parameter
AtoB // j variables B values for B
// ./ | Retumn addr. I‘:g:‘:;fr'g?"g“
- \ from B \
2 ’//>\ Parameter Local
Push procedure values for B variables A
call onto program M —— — — | Return label
stack Local stack to caller A
< operations A Parameter
. Local values for A
variables A \dentificati
1 entification
Procedure A Return addr. for proa A
from A
Migration
Program stack
stack (marshalled
2 data only)
Computer' Science CS677: Distributed OS Lecture 6, page 11

Migration in Today’s Systems

Web: javascript in html, java applets, flash-based pages

Weak mobility: batch schedulers for compute clusters

Virtual machine migration

Malware

Compufep Science CS677: Distributed OS Lecture 6, page 12

Case study: Virtual Machine Migration

* VMs can be migrates from one physical machine to
another

» Migration can be live - no application downtime
* Iterative copying of memory state

Setting up Live Migration Tran: Transferring Modified Memory Pages
D | G
i i : i ’
< <
C C C C C
Source Hos\ Target Host Source Host Target Host
SMB Network Storage Network Storage

5 Compufer Science CS677: Distributed OS Lecture 6, page 13

Case Study: Viruses and Malware

 Viruses and malware are examples of mobile code
— Malicious code spreads from one machine to another
* Sender-initiated:
— proactive viruses that look for machines to infect
* Autonomous code
* Receiver-initiated

— User (receiver) clicks on infected web URL or opens an
infected email attachment

5 Compufer Science CS677: Distributed OS Lecture 6, page 14

Server Design Issues

g ; Server machine
Client machine

) . Server machine
2. Request Register CliSTiREife 2. Continue
}Vice/? Server | end point service §f Actual B Create
Client |« Client |« server server for
\\ ™~ requested
4] \ . service
1. Askfor M 8\ : 1. Roquest T somer
end point | |Daemon \El%tpo'm service

(a) (b)

* Server Design
— Iterative versus concurrent

* How to locate an end-point (port #)?
— Well known port #

— Directory service (port mapper in Unix)
— Super server (inetd in Unix)

Computer Science CS677: Distributed OS Lecture 7, page 15

Stateful or Stateless?

 Stateful server
— Maintain state of connected clients
— Sessions in web servers
 Stateless server
— No state for clients

» Soft state

— Maintain state for a limited time; discarding state does not
impact correctness

omputer Science CS677: Distributed OS Lecture 7, page 16

Server Clusters

Logical switch ! Application/compute servers | Distributed Logically a
(possibly multiple) ! file/database single TCP

! | system : Response Server
connection
= L]
Clien (requests reqy/ . .
|:| |:| @ Client o » Switch | (handed off)

\D De%ii

Firstter ~ Secondtier | Third tier Server

Web applications use tiered architecture
— Each tier may be optionally replicated; uses a dispatcher

— Use TCP splicing or handoffs

Computer Science CS677: Distributed OS Lecture 7, page 17

Server Architecture

Sequential
— Serve one request at a time

— Can service multiple requests by employing events and
asynchronous communication

* Concurrent
— Server spawns a process or thread to service each request
— Can also use a pre-spawned pool of threads/processes (apache)

Thus servers could be
— Pure-sequential, event-based, thread-based, process-based

Discussion: which architecture is most efficient?

Computer Science CS677: Distributed OS Lecture 7, page 18

Scalability

* Question:How can you scale the server capacity?
* Buy bigger machine!

* Replicate

 Distribute data and/or algorithms

 Ship code instead of data

* Cache

Computer Science CS677: Distributed OS Lecture 7, page 19

