
Computer Science Lecture 24, page CS677: Distributed OS

Electronic Payment Systems (1)
• Payment systems based

on direct payment
between customer and
merchant.

a) Paying in cash.
b) Using a check.
c) Using a credit card.

1

Computer Science Lecture 24, page CS677: Distributed OS

E-cash

• The principle of anonymous electronic cash using blind signatures.

2

Computer Science Lecture 24, page

BitCoin
• Digital currency: P2P electronic cash

– Open source crypto protocol
• New coins made by bitcoin servers

– expend resources to generate a coin
– 25 coins generated every 10 minutes

• Uses digital signatures to pay to “public keys”

3

Computer Science Lecture 25, page CS677: Distributed OS

Distributed Middleware

• Distributed objects

• DCOM
• CORBA
• EJBs
• Jini

Computer Science Lecture 23, page CS677: Distributed OS

Distributed Objects

• Figure 10-1. Common organization of a remote
object with client-side proxy.

5

Computer Science Lecture 23, page CS677: Distributed OS

Distributed Objects vs. RPC

RPC : Remote Procedure Call
– Provides argument marshalling / unmarshalling
– Server handles invocation

Distributed Objects
– Remote methods on remote objects
– RPC + distributed object references

Distributed object operation:
– Server side: create object, register it (register with what?) (always in this

order?)
– Client side: get object reference (from where?), invoke method

6

Computer Science Lecture 23, page CS677: Distributed OS

Distributed Objects through History
DCOMONC RPC

DCE RPC CORBA

Java RMI

EJB

A brief and incomplete history of
commercially used RPC and
distributed object systems

The vision

a Grand Distributed System

The reality

Client/Server

7

Computer Science Lecture 23, page CS677: Distributed OS

Naming: Object References

• Interoperable object reference: language-independent techniques
for referring to objects

CORBA object reference

8

Computer Science Lecture 23, page CS677: Distributed OS

Example: Enterprise Java Beans

• Figure 10-2. General
architecture of an
EJB server.

9

Computer Science Lecture 23, page CS677: Distributed OS

Parts of an EJB

• Home interface:
– Object creation, deletion
– Location of persistent objects (entity beans)
– Object identifier is class-managed

• Remote interface
– “business logic”
– i.e. the object itself

• Terminology differences
– Client/server -> web applications

10

Computer Science Lecture 23, page CS677: Distributed OS

Four Types of EJBs

• Stateless session beans
• Stateful session beans
• Entity beans
• Message-driven beans

11

Computer Science Lecture 23, page CS677: Distributed OS

CORBA Overview

• Object request broker (ORB)
– Core of the middleware platform
– Handles communication between objects and clients
– Handles distribution and heterogeneity issues
– May be implemented as libraries

• Facilities: composition of CORBA services

12

Computer Science Lecture 23, page CS677: Distributed OS

Corba Services
Service Description

Collection Facilities for grouping objects into lists, queue, sets, etc.

Query Facilities for querying collections of objects in a declarative manner

Concurrency Facilities to allow concurrent access to shared objects

Transaction Flat and nested transactions on method calls over multiple objects

Event Facilities for asynchronous communication through events

Notification Advanced facilities for event-based asynchronous communication

Externalization Facilities for marshaling and unmarshaling of objects

Life cycle Facilities for creation, deletion, copying, and moving of objects

Licensing Facilities for attaching a license to an object

Naming Facilities for systemwide name of objects

Property Facilities for associating (attribute, value) pairs with objects

Trading Facilities to publish and find the services on object has to offer

Persistence Facilities for persistently storing objects

Relationship Facilities for expressing relationships between objects

Security Mechanisms for secure channels, authorization, and auditing

Time Provides the current time within specified error margins

13

Computer Science Lecture 23, page CS677: Distributed OS

Object Model

• Objects & services specified using an Interface Definition language (IDL)
– Used to specify interface of objects and/or services

• ORB: run-time system that handles object-client communication
• Dynamic invocation interface: allows object invocation at run-time

– Generic invoke operation: takes object reference as input
– Interface repository stores all interface definitions

14

Computer Science Lecture 23, page CS677: Distributed OS

Object Invocation Models

• Invocation models supported in CORBA.
– Original model was RMI/RPC-like
– Current CORBA versions support additional semantics

Request type Failure semantics Description

Synchronous At-most-once Caller blocks until a response is returned
or an exception is raised

One-way Best effort delivery Caller continues immediately without
waiting for any response from the server

Deferred
synchronous

At-most-once Caller continues immediately and can
later block until response is delivered

15

Computer Science Lecture 23, page CS677: Distributed OS

Event and Notification Services (1)

• The logical organization of suppliers and consumers of events,
following the push-style model.

16

Computer Science Lecture 23, page CS677: Distributed OS

Event and Notification Services (2)

• The pull-style model for event delivery in CORBA.

17

Computer Science Lecture 23, page CS677: Distributed OS

Messaging: Async. Method Invocation

• CORBA's callback model for asynchronous method invocation.

18

Computer Science Lecture 23, page CS677: Distributed OS

Messaging (2)

• CORBA'S polling model for asynchronous method invocation.

19

Computer Science Lecture 25, page CS677: Distributed OS

DCOM

• Distributed Component Object Model
– Microsoft’s object model (middleware)
– Now evolved into .NET

Computer Science Lecture 25, page CS677: Distributed OS

DCOM: History
• Successor to COM

– Developed to support compound documents
• Word document with excel spreadsheets and images

• Object linking and embedding (OLE)
– Initial version: message passing to pass information between parts
– Soon replaced by a more flexible layer: COM

• ActiveX: OLE plus new features
– No good consensus on what exactly does ActiveX contain
– Loosely: groups capabilities within applications to support

scripting, grouping of objects.
• DCOM: all of the above, but across machines

Computer Science Lecture 25, page CS677: Distributed OS

Type Library and Registry

• The overall architecture of DCOM.
– Type library == CORBA interface repository
– Service control manager == CORBA implmentation repository

Computer Science Lecture 25, page CS677: Distributed OS

Monikers: Persistent Objects

• By default, DCOM objects are transient
• Persistent objects implemented using monikers (reference stored on disk)

– Has all information to recreate the object at a later time

Step Performer Description

1 Client Calls BindMoniker at moniker

2 Moniker Looks up associated CLSID and instructs SCM to
create object

3 SCM Loads class object

4 Class object Creates object and returns interface pointer to
moniker

5 Moniker Instructs object to load previously stored state

6 Object Loads its state from file

7 Moniker Returns interface pointer of object to client

Computer Science Lecture 25, page CS677: Distributed OS

Monikers (2)

• DCOM-defined moniker types.

Moniker type Description

File moniker Reference to an object constructed from a file

URL moniker Reference to an object constructed from a URL

Class moniker Reference to a class object

Composite moniker Reference to a composition of monikers

Item moniker Reference to a moniker in a composition

Pointer moniker Reference to an object in a remote process

Computer Science Lecture 25, page CS677: Distributed OS

Distributed Coordination

• Motivation
– Next generation of systems will be inherently distributed

– Main problem: techniques to coordinate various components
• Emphasis on coordination of activities between components

Computer Science Lecture 25, page CS677: Distributed OS

Introduction to Coordination Models

• Key idea: separation of computation from coordination
• A taxonomy of coordination models

– Direct coordination
– Mailbox coordination
– Meeting-oriented coordination (publish/subscribe)
– Generative (shared tuple space)

Computer Science Lecture 25, page CS677: Distributed OS

Jini Case Study

• Coordination system based on Java
– Clients can discover new services as they become available
– Example: “intelligent toaster”
– Distributed event and notification system

• Coordination model
– Bulletin board model
– Uses JavaSpaces: a shared dataspace that stores tuples

• Each tuple points to a Java object

Computer Science Lecture 25, page

Overall Approach

• The principle of exchanging data items between
publishers and subscribers.

Computer Science Lecture 25, page CS677: Distributed OS

Overview of Jini

• The general organization of a JavaSpace in Jini.

Computer Science Lecture 25, page CS677: Distributed OS

Communication Events

• Using events in combination with a JavaSpace

Computer Science Lecture 25, page CS677: Distributed OS

Processes (1)

• A JavaSpace can be replicated on all machines. The dotted lines show the
partitioning of the JavaSpace into subspaces.

a) Tuples are broadcast on WRITE
b) READs are local, but the removing of an instance when calling TAKE must

be broadcast

Computer Science Lecture 25, page CS677: Distributed OS

Processes (2)

• Unreplicated JavaSpace.
a) A WRITE is done locally.
b) A READ or TAKE requires the template tuple to be broadcast in

order to find a tuple instance

Computer Science Lecture 20, page CS677: Distributed OS

A Hybrid Approach: Leases
• Lease: duration of time for which server agrees to notify proxy of

modification
• Issue lease on first request, send notification until expiry

– Need to renew lease upon expiry
• Smooth tradeoff between state and messages exchanged

– Zero duration => polling, Infinite leases => server-push
• Efficiency depends on the lease duration

Client Proxy Server

Get + lease req

Reply + lease
read

Invalidate/update

33

Computer Science Lecture 20, page CS677: Distributed OS

Policies for Leases Duration

• Age-based lease
– Based on bi-modal nature of object lifetimes
– Larger the expected lifetime longer the lease

• Renewal-frequency based
– Based on skewed popularity
– Proxy at which objects is popular gets longer lease

• Server load based
– Based on adaptively controlling the state space
– Shorter leases during heavy load

34

Computer Science Lecture 20, page CS677: Distributed OS

Cooperative Caching

• Caching infrastructure can have multiple web proxies
– Proxies can be arranged in a hierarchy or other structures

• Overlay network of proxies: content distribution network
– Proxies can cooperate with one another

• Answer client requests
• Propagate server notifications

35

Computer Science Lecture 20, page CS677: Distributed OS

 Hierarchical Proxy Caching

Examples: Squid, Harvest

Server

Parent

HTTP

HTTP Read A
1

ICPICP

ICP

2

HTTP

3

Clients

Leaf Caches

36

Computer Science Lecture 20, page CS677: Distributed OS

Locating and Accessing Data

• Lookup is local
• Hit at most 2 hops
• Miss at most 2 hops (1 extra on wrong hint)

Properties

(A,X)

Node X

Server
for B

Clients

Caches
Read A

Get A

Read B

Get B
Node Y

Minimize cache hops on hit Do not slow down misses

Node Z

37

