
CS677: Distributed OSComputer Science Lecture 23, page

Today: Distributed File Systems

• Issues in distributed file systems

• Case studies:
• NFS
• Coda
• xFS + RAID
• Log-structured file systems (time permitting)

1

CS677: Distributed OSComputer Science Lecture 23, page

Distributed File Service

• Remote access model
– Work done at the server

• Stateful server (e.g., databases)
• Consistent sharing (+)
• Server may be a bottleneck (-)
• Need for communication (-)

•Upload/download mode
– Work done at the client

•Stateless server
•Simple functionality (+)
•Moves files/blocks, need storage (-)

2

CS677: Distributed OSComputer Science Lecture 23, page

System Structure: Server Type

• Stateless server
– No information is kept at server between client requests
– All information needed to service a requests must be provided

by the client with each request (what info?)
– More tolerant to server crashes

• Stateful server
– Server maintains information about client accesses
– Shorted request messages
– Better performance
– Idempotency easier
– Consistency is easier to achieve

3

CS677: Distributed OSComputer Science Lecture 23, page

NFS Architecture
• Sun’s Network File System (NFS) – widely used distributed file system
• Uses the virtual file system layer to handle local and remote files

4

CS677: Distributed OSComputer Science Lecture 23, page

NFS Operations
Operation v3 v4 Description

Create Yes No Create a regular file

Create No Yes Create a nonregular file

Link Yes Yes Create a hard link to a file

Symlink Yes No Create a symbolic link to a file

Mkdir Yes No Create a subdirectory in a given directory

Mknod Yes No Create a special file

Rename Yes Yes Change the name of a file

Rmdir Yes No Remove an empty subdirectory from a directory

Open No Yes Open a file

Close No Yes Close a file

Lookup Yes Yes Look up a file by means of a file name

Readdir Yes Yes Read the entries in a directory

Readlink Yes Yes Read the path name stored in a symbolic link

Getattr Yes Yes Read the attribute values for a file

Setattr Yes Yes Set one or more attribute values for a file

Read Yes Yes Read the data contained in a file

Write Yes Yes Write data to a file

5

CS677: Distributed OSComputer Science Lecture 23, page

Communication

a) Reading data from a file in NFS version 3.
b) Reading data using a compound procedure in version 4.
 Both versions use Open Network Computing (ONC) RPCs
 - One RPC per operation (NFS v3); multiple operations supported in v4.

6

CS677: Distributed OSComputer Science Lecture 23, page

Naming: Mount Protocol
• NFS uses the mount protocol to access remote files

– Mount protocol establishes a local name for remote files
– Users access remote files using local names; OS takes care of the mapping

7

CS677: Distributed OSComputer Science Lecture 23, page

Naming: Crossing Mount Points
• Mounting nested directories from multiple servers
• NFS v3 does not support transitive exports (for security reasons)

– NFS v4 allows clients to detects crossing of mount points, supports recursive lookups

8

CS677: Distributed OSComputer Science Lecture 23, page

Automounting

• Automounting: mount on demand

9

CS677: Distributed OSComputer Science Lecture 23, page

Semantics of File Sharing

• Four ways of dealing with the shared files in a distributed system.
– NFS implements session semantics

• Can use remote/access model for providing UNIX semantics (expensive)
• Most implementations use local caches for performance and provide session semantics

Method Comment

UNIX semantics Every operation on a file is instantly visible to all processes

Session semantics No changes are visible to other processes until the file is closed

Immutable files No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

10

CS677: Distributed OSComputer Science Lecture 23, page

File Locking in NFS

• NFS supports file locking
• Applications can use locks to ensure consistency
• Locking was not part of NFS until version 3
• NFS v4 supports locking as part of the protocol (see above table)

Operation Description

Lock Creates a lock for a range of bytes (non-blocking_

Lockt Test whether a conflicting lock has been granted

Locku Remove a lock from a range of bytes

Renew Renew the lease on a specified lock

11

CS677: Distributed OSComputer Science Lecture 23, page

Client Caching

• Client-side caching is left to the implementation (NFS does not prohibit it)
– Different implementation use different caching policies

• Sun: allow cache data to be stale for up to 30 seconds

12

CS677: Distributed OSComputer Science Lecture 23, page

Client Caching: Delegation

• NFS V4 supports open delegation
– Server delegates local open and close requests to the NFS client
– Uses a callback mechanism to recall file delegation.

13

CS677: Distributed OSComputer Science Lecture 23, page

RPC Failures

• Three situations for handling retransmissions: use a duplicate request cache
a) The request is still in progress
b) The reply has just been returned
c) The reply has been some time ago, but was lost.
 Use a duplicate-request cache: transaction Ids on RPCs, results cached

14

CS677: Distributed OSComputer Science Lecture 23, page

Coda Overview
• DFS designed for mobile clients

– Nice model for mobile clients who are often disconnected
• Use file cache to make disconnection transparent
• At home, on the road, away from network connection

• Coda supplements file cache with user preferences
– E.g., always keep this file in the cache
– Supplement with system learning user behavior

• How to keep cached copies on disjoint hosts
consistent?
– In mobile environment, “simultaneous” writes can be

separated by hours/days/weeks

15

CS677: Distributed OSComputer Science Lecture 23, page

Server Replication

• Use replicated writes: read-once write-all
– Writes are sent to all AVSG (all accessible replicas)

• How to handle network partitions?
– Use optimistic strategy for replication
– Detect conflicts using a Coda version vector
– Example: [2,2,1] and [1,1,2] is a conflict => manual

reconciliation
CS677: Distributed OS 16

CS677: Distributed OSComputer Science Lecture 23, page

Disconnected Operation

• The state-transition diagram of a Coda client with respect to a
volume.

• Use hoarding to provide file access during disconnection
– Prefetch all files that may be accessed and cache (hoard) locally
– If AVSG=0, go to emulation mode and reintegrate upon reconnection

CS677: Distributed OS 17

CS677: Distributed OSComputer Science Lecture 23, page

xFS Summary

• Distributes data storage across disks using software
RAID and log-based network striping
– RAID == Redundant Array of Independent Disks

• Dynamically distribute control processing across all
servers on a per-file granularity
– Utilizes serverless management scheme

• Eliminates central server caching using cooperative
caching
– Harvest portions of client memory as a large, global file cache.

CS677: Distributed OS 18

CS677: Distributed OSComputer Science Lecture 23, page

RAID Overview

• Basic idea: files are "striped" across multiple disks
• Redundancy yields high data availability

– Availability: service still provided to user, even if some
components failed

• Disks will still fail
• Contents reconstructed from data redundantly stored in

the array
– Capacity penalty to store redundant info
– Bandwidth penalty to update redundant info

Slides courtesy David Patterson

19

CS677: Distributed OSComputer Science Lecture 23, page

Array Reliability

• Reliability of N disks = Reliability of 1 Disk ÷ N

! 50,000 Hours ÷ 70 disks = 700 hours

 ! Disk system MTTF: Drops from 6 years to 1 month!

• Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

20

CS677: Distributed OSComputer Science Lecture 23, page

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
• Very high availability can be achieved

• Bandwidth sacrifice on write:!
• Logical write = two physical writes
• Reads may be optimized

• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip…involves Hamming codes)

recovery
group

21

CS677: Distributed OSComputer Science Lecture 23, page

Inspiration for RAID 5
• Use parity for redundancy

– D0 ⨂ D1 ⨂ D2 ⨂ D3 = P
– If any disk fails, then reconstruct block using parity:

• e.g., D0 = D1 ⨂ D2 ⨂ D3 ⨂ P
• RAID 4: all parity blocks stored on the same disk

– Small writes are still limited by Parity Disk: Write to D0, D5,
both also write to P disk

– Parity disk becomes bottleneck

D0 D1 D2 D3 P

D4 D5 D6 PD7

22

CS677: Distributed OSComputer Science Lecture 23, page

Redundant Arrays of Inexpensive Disks
RAID 5: High I/O Rate Interleaved Parity

Independent
writes
possible
because of
interleaved
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P

.

.
.
.

.

.
.
.

.

.
Disk Columns

Increasing
Logical
Disk
Addresses

Example:
write to D0,
D5 uses
disks 0, 1, 3,
4

23

CS677: Distributed OSComputer Science Lecture 23, page

xFS uses software RAID

• Two limitations
– Overhead of parity management hurts performance for small

writes
• Ok, if overwriting all N-1 data blocks
• Otherwise, must read old parity+data blocks to calculate

new parity
• Small writes are common in UNIX-like systems

– Very expensive since hardware RAIDS add special hardware to
compute parity

24

