Today: Distributed File Systems

* Issues in distributed file systems

 Case studies:
* NFS
* Coda
* xFS + RAID
* Log-structured file systems (time permitting)

Compufgr Science CS677: Distributed OS Lecture 23, page |

Distributed File Service

1. File moved to client
Client Server Client Server

Requests from \
clientto access File stays 2. Accesses are 3. When client is done
remote file on server done on client file is returned to
server
. Remote access model *Upload/download mode
— Work done at the server — Work done at the client
. Stateful server (e.g., databases) *Stateless server
. Consistent sharing (+) Simple functionality (+)
. Server may be a bottleneck (-) *Moves files/blocks, need storage (-)
. Need for communication (-)

Compufgr Science CS677: Distributed OS Lecture 23, page 2

System Structure: Server Type

 Stateless server
— No information is kept at server between client requests

— All information needed to service a requests must be provided
by the client with each request (what info?)

— More tolerant to server crashes

« Stateful server
— Server maintains information about client accesses
— Shorted request messages
— Better performance
— Idempotency easier
— Consistency is easier to achieve

omputer Science CS677: Distributed OS Lecture 23, page 3

NFS Architecture

* Sun’s Network File System (NFS) — widely used distributed file system
» Uses the virtual file system layer to handle local and remote files

Client Server
System call layer System call layer
Virtual file system Virtual file system
(VFS) layer (VFS) layer
Local file . Local file
system interface NFS client NFS server system interface
RPC client RPC server
stub stub

L)

Network

& CompuTer Science CS677: Distributed OS Lecture 23, page 4

p— L]
NFS Operations
Operation v3 v4 Description
Create Yes No Create a regular file
Create No Yes Create a nonregular file
Link Yes Yes Create a hard link to a file
Symlink Yes No Create a symbolic link to a file
Mkdir Yes No Create a subdirectory in a given directory
Mknod Yes No Create a special file
Rename Yes Yes Change the name of a file
Rmdir Yes No Remove an empty subdirectory from a directory
Open No Yes Open a file
Close No Yes Close a file
Lookup Yes Yes Look up a file by means of a file name
Readdir Yes Yes Read the entries in a directory
Readlink Yes Yes Read the path name stored in a symbolic link
Getattr Yes Yes Read the attribute values for a file
Setattr Yes Yes Set one or more attribute values for a file
Read Yes Yes Read the data contained in a file
Write Yes Yes Write data to a file

Compufer' Science CS677: Distributed OS Lecture 23, page 5

Communication

Client Server Client Server
LOOKUP
OPEN
LOOKUP READ
g I——
i Lookup name i Lookup name
< -
4"____—'__—’4 ™ .
+ Open file
—READ | '\ Read file data
, '\ Read file data . %
Time < Time
v v
@ (o)

a) Reading data from a file in NFS version 3.
b) Reading data using a compound procedure in version 4.
Both versions use Open Network Computing (ONC) RPCs
- One RPC per operation (NFS v3); multiple operations supported in v4.

Compufer' Science CS677: Distributed OS Lecture 23, page 6

Naming: Mount Protocol

NFS uses the mount protocol to access remote files

— Mount protocol establishes a local name for remote files

— Users access remote files using local names; OS takes care of the mapping

Client A

Server

remote

bin

users ﬂ‘

T

ClientB
work bin
O
me
T ’—\\
Ay
¢ \
/ \
/I \
J/ mbox
- \
i} A\
s I~ o\
I AN
! (O®)

Exported directory
mounted by client

Exported directory
mounted by client

omputer Science

CS677: Distributed OS

Network

Lecture 23, page 7

Exported directory
contains imported

subdirectory

Client
imports
directory

from
server A

‘| server B

Naming: Crossing Mount Points

Mounting nested directories from multiple servers
NFS v3 does not support transitive exports (for security reasons)
— NFS v4 allows clients to detects crossing of mount points, supports recursive lookups

Server B

Server A

imports

directory
from

I

R O
// \\ \

U ,// install
; 4[g

N
\

— !

()

/

Client needs to
explicitly import
subdirectory from
server B

omputer Science

CS677: Distributed O

S

Lecture 23, page 8

Automounting

Client machine

Server machine

€— 1. Lookup "/home/alice"

o L

3. Mount request

Automounter

NFS client
2. Create subdir "alice"

Local file system interface ‘

hom‘ey:|

4. Mount subdir "alice"
from server

users

* Automounting: mount on demand

omputer Science CS677: Distributed OS

Lecture 23, page 9

Semantics of File Sharing

Method Comment

UNIX semantics

Every operation on a file is instantly visible to all processes

Session semantics

No changes are visible to other processes until the file is closed

Immutable files

No updates are possible; simplifies sharing and replication

Transaction All changes occur atomically

— NFS implements session semantics

omputer Science CS677: Distributed OS

Four ways of dealing with the shared files in a distributed system.

» Can use remote/access model for providing UNIX semantics (expensive)

* Most implementations use local caches for performance and provide session semantics

Lecture 23, page 10

File Locking in NFS

Operation Description

Lock Creates a lock for a range of bytes (non-blocking_
Lockt Test whether a conflicting lock has been granted
Locku Remove a lock from a range of bytes

Renew Renew the lease on a specified lock

Computer Science

* NFS supports file locking
* Applications can use locks to ensure consistency
» Locking was not part of NFS until version 3

CS677: Distributed OS

» NFS v4 supports locking as part of the protocol (see above table)

Lecture 23, page 11

Client Caching

* Client-side caching is left to the implementation (NFS does not prohibit it)
— Different implementation use different caching policies
* Sun: allow cache data to be stale for up to 30 seconds

Memory
cache

Disk
cache

Client NFS server
application

Computer Science

Network

CS677: Distributed OS

Lecture 23, page 12

Client Caching: Delegation

* NFS V4 supports open delegation
— Server delegates local open and close requests to the NFS client
— Uses a callback mechanism to recall file delegation.

1. Client asks for file

Client S
en — 2. Server delegates file erver

e]

Local copy 3. Server recalls delegation

4. Client sends returns file

> Gpdetea ie

Compufer Science CS677: Distributed OS Lecture 23, page 13

RPC Failures

Client Server Client Server Client Server
XID = 1234 XID=1234 w‘

XID = 1234 N A N
\ | process t L

| request | !
» AD=1234 | reply is lost
|

‘/4 Cache >‘<< Cache XA/&(Eache
ey | il =5 o
B

Time Time Time A

v v Vo

(a) (b) (©

. Three situations for handling retransmissions: use a duplicate request cache
a) The request is still in progress

b) The reply has just been returned

c) The reply has been some time ago, but was lost.

Use a duplicate-request cache: transaction Ids on RPCs, results cached

omputer Science CS677: Distributed OS Lecture 23, page 14

Coda Overview

* DFS designed for mobile clients

— Nice model for mobile clients who are often disconnected
 Use file cache to make disconnection transparent
* At home, on the road, away from network connection

* Coda supplements file cache with user preferences
— E.g., always keep this file in the cache
— Supplement with system learning user behavior
* How to keep cached copies on disjoint hosts
consistent?

— In mobile environment, “simultaneous” writes can be
separated by hours/days/weeks

) Computer Science CS677: Distributed OS Lecture 23, page 15

Server Replication

Server Server
T i —
] / / |
[[T [
Client Broken Client
A Seéver network B
- Ha

» Use replicated writes: read-once write-all
— Writes are sent to all AVSG (all accessible replicas)

How to handle network partitions?
— Use optimistic strategy for replication
— Detect conflicts using a Coda version vector

— Example: [2,2,1] and [1,1,2] 1s a conflict => manual
reconciliation

) Computer Science CS677: DigifibiedXsributed OS Lecture 23, page 16

Disconnected Operation

HOARDING

Reintegration
completed

REINTEGRATION

Disconnection . .
Disconnection

EMULATION

Reconnection

* The state-transition diagram of a Coda client with respect to a
volume.
* Use hoarding to provide file access during disconnection
— Prefetch all files that may be accessed and cache (hoard) locally
— If AVSG=0, go to emulation mode and reintegrate upon reconnection

g Computer Science CS677: DigiSbufedidSributed OS Lecture 23, page 17

XFS Summary

* Distributes data storage across disks using software
RAID and log-based network striping
— RAID == Redundant Array of Independent Disks

« Dynamically distribute control processing across all
servers on a per-file granularity
— Utilizes serverless management scheme

« Eliminates central server caching using cooperative
caching
— Harvest portions of client memory as a large, global file cache.

‘ omputer Science CS677: Di€iSbitfediixSributed OS Lecture 23, page 18

RAID Overview

Basic idea: files are "striped" across multiple disks

Redundancy yields high data availability

— Availability: service still provided to user, even if some
components failed

Disks will still fail

Contents reconstructed from data redundantly stored in
the array

— Capacity penalty to store redundant info

— Bandwidth penalty to update redundant info

Slides courtesy David Patterson

Compufer Science CS677: Distributed OS Lecture 23, page 19

Array Reliability

 Reliability of N disks = Reliability of | Disk + N
50,000 Hours + 70 disks = 700 hours
Disk system MTTF: Drops from 6 years to | month!

* Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

Compufer Science CS677: Distributed OS Lecture 23, page 20

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

recovery

JE 188

* Each disk is fully duplicated onto its “mirror”
*Very high availability can be achieved

* Bandwidth sacrifice on write:
* Logical write = two physical writes
* Reads may be optimized

* Most expensive solution: 100% capacity overhead

* (RAID 2 not interesting, so skip...involves Hamming codes)

omputer Science CS677: Distributed OS Lecture 23, page 21

Inspiration for RAID 5

 Use parity for redundancy
- D0® DI ®D2®D3=P
— If any disk fails, then reconstruct block using parity:
*eg,D0=D1®D2XD3XP
* RAID 4: all parity blocks stored on the same disk

— Small writes are still limited by Parity Disk: Write to D0, D5,
both also write to P disk

— Parity disk becomes bottleneck

-) D) G i

m DI| D2 D3 P
] =[] [=] [

Y —~
omputer Science O C S6 @tcdc Lecture 23, page 22

Redundant Arrays of Inexpensive Disks
RAID 5: High 1/0 Rate Interleaved Parity

OO o o= '
\ | :_ncr'ea?lng
DO DI D2 D3 ogica
Independent £ Disk
writes Addresses
possible D41 | P “ p6| | P | |D7
because of
interleaved D8 | | D9 P DIo[(DIl
parity
D12 P DI3 DIi4 DI5
Example:
write to DO, P | [p16|] [D17| [DI18| |DI9
D5 uses
disks O, I, 3, D20| |D21 D22 |D23 P
4
omputer Science \ €S .uibllﬁﬁgﬁ%olumns Lecture 23, page 23

XFS uses software RAID

* Two limitations

— Overhead of parity management hurts performance for small
writes

* Ok, if overwriting all N-1 data blocks

» Otherwise, must read old parity+data blocks to calculate
new parity

* Small writes are common in UNIX-like systems

— Very expensive since hardware RAIDS add special hardware to
compute parity

. omputer Science CS677: Distributed OS Lecture 23, page 24

