Last Class: RPCs and RMI

* Case Study: Sun RPC
* Lightweight RPCs

* Remote Method Invocation (RMI)

— Design issues

CompuTer‘ Science CS677: Distributed OS Lecture 10, page |

Today: Communication Issues

* Message-oriented communication
— Persistence and synchronicity

» Stream-oriented communication

Computer Science CS677: Distributed OS Lecture 10, page 2

Persistence and Synchronicity in Communication

Messaging interface

Sending host Communication server Communication server Receiving host
Buffer independent
o Routing of communicating Routin .
Application program hosts prograr?‘l Application
A

A& | To other remote) -
:J H H communication H H =
— — 1= server \ — - —\

os 0s ~a os \os

Local buffer Local network Internetwork . Local buffer

Incoming message

Compu’rer Science CS677: Distributed OS Lecture 10, page 3

Persistence

 Persistent communication
— Messages are stored until (next) receiver is ready
— Examples: email, pony express

. Post |~ |
Pony and rider office | »
\4 v A
Post # Post |
office | ___*__T___] » | office
A | Post ::__>
Mail stored and sorted, to office | ~.
A

be sent out depending on destination
and when pony and rider available

Compu’rer Science CS677: Distributed OS Lecture 10, page 4

Transient Communication

* Transient communication

— Message is stored only so long as sending/receiving
application are executing

— Discard message if it can’t be delivered to next server/receiver

— Example: transport-level communication services offer
transient communication

— Example: Typical network router — discard message if it can’t
be delivered next router or destination

Compufer Science CS677: Distributed OS Lecture 10, page 5

Synchronicity

* Asynchronous communication
— Sender continues immediately after it has submitted the message
— Need a local buffer at the sending host

* Synchronous communication

— Sender blocks until message is stored in a local buffer at the
receiving host or actually delivered to sending

— Variant: block until receiver processes the message

» Six combinations of persistence and synchronicity

Compufer Science CS677: Distributed OS Lecture 10, page 6

Persistence and Synchronicity Combinations

A sends message

and continues A stopped

B
B starts and
Bis not receives
running message

a) Persistent asynchronous communication (e.g., email)
b) Persistent synchronous communication

Computer Science

CS677: Distributed OS

A sends message A stopped
and waits until accepted running
A
Message is stored
at B's location for
later delivery Time
- —p
B S s
Bis not B starts and
running receives
message

(b)

Lecture 10, page 7

Persistence and Synchronicity Combinations

A sends message
and continues

A Message can be
sentonly if B is
running

Time

B ----- —)

B receives
message
(©

Send request and wait
until received

A
Request
is received)
Time
B \ ______ —_

Running, but doing Process
something else request
(d)

c) Transient asynchronous communication (e.g., UDP)
d) Receipt-based transient synchronous communication

omputer Science

CS677: Distributed OS

Lecture 10, page 8

Persistence and Synchronicity Combinations

Send request and wait until Send request
accepted } and wait for reply

A — e R A — .

Request Request
is received Accepted) is received)
Time Time
B p——— e —— B'_%_ﬁv ,:‘———-":\a\/___/\) ____________
Running, but doing Process Runnmg, but doing Process
something else request something else request
(e) ®

e) Delivery-based transient synchronous communication at message delivery
(e.g., asynchronous RPC)

f) Response-based transient synchronous communication (RPC)

Compufer Science CS677: Distributed OS Lecture 10, page 9

Message-oriented Transient Communication

* Many distributed systems built on top of simple message-oriented model
— Example: Berkeley sockets

Server /—\)
| socket - bind | listen - accAept}—\ﬁ r:ad = write F—» close |

|
| ! \
. . . , Y
Synchronization point — ! Communication
! \

Y : A
socket Prconnect-» write |——®» read close |
Client

Compufer Science CS677: Distributed OS Lecture 10, page10

Berkeley Socket Primitives

Primitive Meaning
Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection
Compufgr Science CS677: Distributed OS Lecture 10, page |1

Message-Passing Interface (MPI)

* Sockets designed for network communication (e.g., TCP/IP)
— Support simple send/receive primitives

« Abstraction not suitable for other protocols in clusters of

workstations or massively parallel systems

— Need an interface with more advanced primitives

» Large number of incompatible proprietary libraries and protocols
— Need for a standard interface

* Message-passing interface (MPI)
— Hardware independent
— Designed for parallel applications (uses fransient communication)

« Key idea: communication between groups of processes
— Each endpoint is a (groupID, processID) pair

CompuTer Science CS677: Distributed OS Lecture 10, page12

MPI Primitives
Primitive Meaning
MPI_bsend Append outgoing message to a local send buffer
MPI_send Send a message and wait until copied to local or remote buffer
MPI_ssend Send a message and wait until receipt starts
MPI_sendrecv Send a message and wait for reply
MPI_isend Pass reference to outgoing message, and continue
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none
MPI_irecv Check if there is an incoming message, but do not block

omputer Science CS677: Distributed OS Lecture 10, page13

Message-oriented Persistent Communication

* Message queuing systems
— Support asynchronous persistent communication

— Intermediate storage for message while sender/receiver are
nactive

— Example application: email

« Communicate by inserting messages in queues

* Sender is only guaranteed that message will be
eventually inserted in recipient’s queue
— No guarantees on when or if the message will be read
— “Loosely coupled communication”

& CompuTer Science CS677: Distributed OS Lecture 10, page14

Computer

Message-Queuing Model (1)

Sender Sender Sender Sender
running running passive passive

<« ||l <

Receiver Receiver Receiver Receiver
running passive running passive
(a) (b) (c) (d)
Science Lecture 10, page 15

Message-Queuing Model

Look-up
Sender | |~ transport-level Receiver
address of queue

Queuing Queue-level //: =| Queuing
layer < layer

address 1

Local OS ‘ Address look-up Local OS \

database
K J Transport-level

address

Network

Primitive Meaning

Put Append a message to a specified queue

Get Block until the specified queue is nonempty, and remove the first message
Poll Check a specified queue for messages, and remove the first. Never block.
Notify Install a handler to be called when a message is put into the specified queue.

Computer

Science CS677: Distributed OS Lecture 10, page16

General Architecture of a Message-Queuing
System (2)

Sender A
Application Application
Receive
lﬁi\ R2 T F
- \ Message [[<> [T
Send queue \4 @ E
O o >
: Application
[
R1 \ <« > E\}‘ J/
S| N
{\II _ N : Receiver B
Application h gi==
Router

* Queue manager and relays
— Relays use an overlay network
— Relays know about the network topology and how to route

Computer Science Lecture 10, page7

Message Brokers

Repository with
conversion rules
Source client Message broker and programs Destination client
\ \ / /
\ \ / [

Broker
program

ER R

0S 0S 0S

T
- 111]

Network

» Message broker: application level gateway in MQS

— Convert incoming messages so that they can be understood by
destination (format conversion)

— Also used for pub-sub systems

Computer Science Lecture 10, page]8

IBM’s WebSphere MQ

Sending client Routing table

\—J
RPC
(synchronous) wapal ueliens / Enterprlse network
To
[]

other remote
Message passing queue managers

Client's receive o .
Send queue queue Receiving client
- 7
Queue Queue
PEBEEm manager manager Program
MQ Interface m m
N
Server Server
Stub stub MCA| IMCA MCA||MCA stub Stub

(asynchronous)

Queue managers manage queues
— Connected through message channels

* Message channel agent (MCA)

— Checks queue, wraps into TCP packet, send to receiving MCA

Computer Science

Lecture 10, page19

Stream Oriented Communication

* Message-oriented communication: request-response

— When communication occurs and speed do not affect correctness
* Timing is crucial in certain forms of communication
— Examples: audio and video (“continuous media”)

— 30 frames/s video => receive and display a frame every 33ms
Characteristics

— Isochronous communication

* Data transfers have a maximum bound on end-end delay and
jitter

— Push mode: no explicit requests for individual data units beyond
the first “play” request

Computer Science CS677: Distributed OS

Lecture 10, page20

Examples

Camera
H:':’%ﬂ Display
— os Stream oS f_g
IC v 7

Notwork Single sender and receiver

(b)

Stream >D Sink
A

D_>|: Intermediate

node, possibly
Source \ “ with filters One Sender‘

[»D Multiple receivers

Lower bandwidth

g Computer Science CS677: Distributed OS Lecture 10, page21

Streams and Quality of Service

* Properties for Quality of Service:

* The required bit rate at which data should be
transported.

* The maximum delay until a session has been set up
* The maximum end-to-end delay .

* The maximum delay variance, or jitter.

¢ The maximum round-trip delay.

omputer Science Lecture 10, page22

Quality of Service (QoS)

* Time-dependent and other requirements are specified as quality of service (QoS)
— Requirements/desired guarantees from the underlying systems
— Application specifies workload and requests a certain service quality
— Contract between the application and the system

Characteristics of the Input Service Required

emaximum data unit size (bytes) eLoss sensitivity (bytes)

eToken bucket rate (bytes/sec) eLoss interval (usec)

«Toke bucket size (bytes) *Burst loss sensitivity (data units)

eMaximum transmission rate (bytes/ «Minimum delay noticed (usec)

sec) «Maximum delay variation (usec)
*Quality of guarantee

CompuTer Science CS677: Distributed OS Lecture 10, page23

Specifying QoS: Token bucket

Application 1
i /*\

Irregular stream One token is added
of data units to the bucket every AT
- e e

Regular stream

* The principle of a token bucket algorithm
Parameters (rate r, burst b)

Rate is the average rate, burst is the maximum number of packets that can arrive simultaneously

CompuTer Science CS677: Distributed OS Lecture 10, page24

Enforcing QoS

Stream synchronization

Multimedia server Client
‘ Stream | Stream
@7 decoder |~ | decoder
Compressed control control
multimedia data
S 1

Network
Entorce at end-points (€.g., tbKGl’l bucCKet)
— No network support needed

Mark packets and use router support
— Differentiated services: expedited & assured forwarding

Use buffers at receiver to mask jitter

Packet losses
— Handle using forward error correction
— Use interleaving to reduce impact

Computer Science CS677: Distributed OS Lecture 10, page25

Enforcing QoS (1)

Packet departs source E|
Packet arrives at buffer @
Packet removed from buffer ‘4 Time In buffer I I I I I |E| I K

Lo v oy 0

0 5 1 0 1 5 20
Time (sec)

Gap |n playback

Computer Science Lecture 10, page26

Enforcing QoS (2)

Lost packet

Sent [5][e][7][e]] {[o] 1ol [11] [i2]
Deiivered [1] [2] [3] [4] [5] [6] [7] [¢] [o] 0] [i1] [12] [13] [14] [15] [te]

Gap of lost frames

(a)

Lost packet

Sent | [1][s][o][13]||[2][6] 10 (14

Diliveredd @@

Lost frames

(b)

 Can also use forward error correction (FEC)

g Computer Science Lecture 10, page27

Stream synchronization

Multiple streams:
— Audio and video; layered video

Need to sync prior to playback

— Timestamp each stream and sync up data units prior to
playback

Sender or receiver?

App does low-level sync
— 30 fps: image every 33ms, lip-sync with audio

Use middleware and specify playback rates

‘ omputer Science CS677: Distributed OS Lecture 10, page28

