
Computer Science Lecture 25, page CS677: Distributed OS

Today: More Case Studies

• DCOM

• Jini

Computer Science Lecture 25, page CS677: Distributed OS

DCOM

• Distributed Component Object Model
– Microsoft’s object model (middleware)

Computer Science Lecture 25, page CS677: Distributed OS

DCOM: History
• Successor to COM

– Developed to support compound documents
• Word document with excel spreadsheets and images

• Object linking and embedding (OLE)
– Initial version: message passing to pass information between parts
– Soon replaced by a more flexible layer: COM

• ActiveX: OLE plus new features
– No good consensus on what exactly does ActiveX contain
– Loosely: groups capabilities within applications to support

scripting, grouping of objects.
• DCOM: all of the above, but across machines

Computer Science Lecture 25, page CS677: Distributed OS

Object Model

• The difference between language-defined and binary interfaces.

Computer Science Lecture 25, page CS677: Distributed OS

DCOM Object Model

• DCOM: uses remote object model
• Supports only binary interfaces

– Table of pointers to methods
– Uses Microsoft IDL

• Unlike CORBA, all objects are transient
– Delete an object with refcount == 0

• Like CORBA, DCOM supports dynamic object invocation

Computer Science Lecture 25, page CS677: Distributed OS

Type Library and Registry

• The overall architecture of DCOM.
– Type library == CORBA interface repository
– Service control manager == CORBA implmentation repository

Computer Science Lecture 25, page CS677: Distributed OS

Events and Messaging

• Event processing in DCOM: publish/subscribe paradigm
• Persistent asynchronous communication: MSFT Message Queuing

Computer Science Lecture 25, page CS677: Distributed OS

Clients

• Passing an object reference in DCOM with custom marshaling.

Computer Science Lecture 25, page CS677: Distributed OS

Monikers: Persistent Objects

• By default, DCOM objects are transient
• Persistent objects implemented using monikers (reference stored on disk)

– Has all information to recreate the object at a later time

Step Performer Description

1 Client Calls BindMoniker at moniker

2 Moniker Looks up associated CLSID and instructs SCM to
create object

3 SCM Loads class object

4 Class object Creates object and returns interface pointer to
moniker

5 Moniker Instructs object to load previously stored state

6 Object Loads its state from file

7 Moniker Returns interface pointer of object to client

Computer Science Lecture 25, page CS677: Distributed OS

Monikers (2)

• DCOM-defined moniker types.

Moniker type Description

File moniker Reference to an object constructed from a file

URL moniker Reference to an object constructed from a URL

Class moniker Reference to a class object

Composite moniker Reference to a composition of monikers

Item moniker Reference to a moniker in a composition

Pointer moniker Reference to an object in a remote process

Computer Science Lecture 25, page CS677: Distributed OS

Naming: Active Directory

• The general organization of Active Directory
– Implemented using LDAP
– Distr. System partitioned into domains (uses domain controllers)
– Each domain controller has a DNS name
– DC registered as LDAP services in DNS

Computer Science Lecture 25, page CS677: Distributed OS

Distributed Coordination

• Motivation
– Next generation of systems will be inherently distributed

– Main problem: techniques to coordinate various components
• Emphasis on coordination of activities between components

Computer Science Lecture 25, page CS677: Distributed OS

Introduction to Coordination Models

• Key idea: separation of computation from coordination
• A taxonomy of coordination models

– Direct coordination
– Mailbox coordination
– Meeting-oriented coordination (publish/subscribe)
– Generative (shared tuple space)

Computer Science Lecture 25, page CS677: Distributed OS

Jini Case Study

• Coordination system based on Java
– Clients can discover new services as they become available
– Example: “intelligent toaster”
– Distributed event and notification system

• Coordination model
– Uses JavaSpaces: a shared dataspace that stores tuples

• Each tuple points to a Java object

Computer Science Lecture 25, page

Overall Approach

• The principle of exchanging data items between
publishers and subscribers.

Computer Science Lecture 25, page CS677: Distributed OS

Overview of Jini

• The general organization of a JavaSpace in Jini.

Computer Science Lecture 25, page CS677: Distributed OS

Architecture

• The layered architecture of a Jini System.

Computer Science Lecture 25, page CS677: Distributed OS

Communication Events

• Using events in combination with a JavaSpace

Computer Science Lecture 25, page CS677: Distributed OS

Processes (1)

• A JavaSpace can be replicated on all machines. The dotted lines show the
partitioning of the JavaSpace into subspaces.

a) Tuples are broadcast on WRITE
b) READs are local, but the removing of an instance when calling TAKE must

be broadcast

Computer Science Lecture 25, page CS677: Distributed OS

Processes (2)

• Unreplicated JavaSpace.
a) A WRITE is done locally.
b) A READ or TAKE requires the template tuple to be broadcast in

order to find a tuple instance

Computer Science Lecture 25, page CS677: Distributed OS

The Jini Lookup Service (1)

• The organization of a service item.

Field Description

ServiceID The identifier of the service associated with this item.

Service A (possibly remote) reference to the object implementing the service.

AttributeSets A set of tuples describing the service.

Computer Science Lecture 25, page CS677: Distributed OS

The Jini Lookup Service (2)

• Examples of predefined tuples for service items.

Tuple Type Attributes

ServiceInfo Name, manufacturer, vendor, version, model, serial number

Location Floor, room, building

Address Street, organization, organizational unit, locality, state or province,
postal code, country

Computer Science Lecture 25, page

Example: Lime

• Transient sharing of local dataspaces in Lime.

