Last Class: Distributed Systems and
RPCs

» Servers export procedures for some set of clients to call
* To use the server, the client does a procedure call
* OS manages the communication

omputer Science (S377: Operating Systems Lecture 26, page 1

Today: Distributed File Systems

¢ One of the most common uses of distributed systems

* Basic idea:
— @Given a set of disks attached to different nodes.
— share disks between nodes as if all the disks were attached to every node.

* Examples:

— Edlab: One server node with all the disks, and a bunch of diskless
workstations on a LAN.

— AppleShare: Every node is both a server with a disk and a client.

omputer Science (S377: Operating Systems Lecture 26, page 2

Distributed File Systems: Issues

* Naming and Transparency
* Remote file access

¢ Caching

* Server with state or without
* Replication

| Computer Science (CS377: Operating Systems Lecture 26, page 3

Naming and Transparency

 Issues
— How are files named?
— Do file names reveal their location?

— Do file names change if the file moves?
— Do file names change if the user moves?

* Location transparency: the name of the file does not reveal the
physical storage location.

¢ Location independence: The name of the file need not change
if the file's storage location changes.

* Most naming schemes used in practice do not have location
independence, but many have location transparency.

| Computer Science (CS377: Operating Systems Lecture 26, page 4

Naming Strategies: Absolute Names

« Absolute names: <machine name: path name>
* Examples: AppleShare, Win NT

* Advantages:
— Finding a fully specified file name is simple.
— Itis easy to add and delete new names.
— No global state.
— Scales easily.

* Disadvantages:

— User must know the complete name and is aware of which files are local
and which are remote.

— File is location dependent, and thus cannot move.
— Makes sharing harder.
— Not fault tolerant.

5§ Computer Science (S377: Operating Systems Lecture 26, page 5

Naming Strategies: Mount Points

¢ Mount Points (NFS - Sun's Network File System)

— Each host has a set of local names for remote locations.

— Each host has a mount table (/etc/fstab) that specifies <remote path name
(@ machine name> and a <local path name>.

— At boot time, the local name is bound to the remote name.
— Users then refer to the <local path name> as if it were local, and the NFS
takes care of the mapping
* Advantages: location transparent, remote name can change
across reboots

* Disadvantages: single unified strategy hard to maintain, same
file can have different names

omputer Science (CS377: Operating Systems Lecture 26, page 6

NFS: Example

Partial contents of /etc/fstab for Edlab machines:

/usrl/mail@elux3.cs.umass.edu:/var/spool/mail
/users/users1(@elsrv1:/users/users1
/users/users2(@elsrv1:/users/users2
/users/users3@elsrv2:/users/users3
/users/users4@elsrv2:/users/users4
/courses/cs300@elsrv3:/courses/cs300
/rcf/mipsel/4.2/share@elsrv1:/exp/rct/share
/ref/common@elsrv1:/exp/ref/common

Computer Science (CS377: Operating Systems

NFS: Example

/ /
U/ u%
mail users1 users2
S\ A\ | N T—
aafeinst aagim grad guest ¢s320 es377
elux3 elsrvl

/

-

var users

| ~

spool ~
usersl users2

P [N

mail - \ I ~

-\ grad guest ¢s320 cs377

aafeinst aagim

~ [—

deluxa

Computer Science (CS377: Operating Systems

Lecture 26, page 7

Lecture 26, page 8

Naming Strategies: Global Name
Space

* Single name space: CMU's Andrew and Berkeley's Sprite
— No matter which node you are on, the file names are the same.
— Set of workstation clients, and a set of dedicated file server machines.
— When a client starts up, it gets its file name structure from a server.

— Asusers access files, the server sends copies to the workstation and the
workstation caches the files

Computer Science (CS377: Operating Systems Lecture 26, page 9

Global Name Space

* Advantages:
— Naming is consistent and easy to keep consistent.

— The global name space insures all the files are the same regardless of where
you login.

— Since names are bound late, moving them is easier.
* Disadvantages:
— It is difficult for the OS to keep file contents consistent due to caching.

— Global name space may limit flexibility.
— Performance problems.

Computer Science (S377: Operating Systems Lecture 26, page 10

Remote File Access and Caching

Once the user specifies a remote file, the OS can do the access either

1. remotely, on the server machine and then return the results using
RPC (called remote service), or

2. can transfer the file (or part of the file) to the requesting host,
and perform local accesses (called caching)

Caching Issues:

¢ Where and when are file blocks cached?

* When are modifications propagated back to the remote file?
* What happens if multiple clients cache the same file?

| Computer Science (CS377: Operating Systems Lecture 26, page 11

Remote File Access and Caching

Location

* Local disk

— Advantages:
e Access time reduced.
e Safer if node fails.

— Disadvantages:
* Difficult to keep local copy consistent with remote copy.
* Slower than just keeping it in local memory.
* Requires client to have a disk.

| Computer Science (CS377: Operating Systems Lecture 26, page 12

Remote File Access and Caching

Location

* Local memory
— Advantages: Quick access time.

— Disadvantages:
« Difficult to keep local copy consistent with remote copy.
* Does not tolerate node failure well.
* Limited cache size.

Works with diskless workstations.

Computer Science (CS377: Operating Systems Lecture 26, page 13

Cache Update Policies

When to write local changes to the server has a central role in
determining distributed file system performance.

* Write through: yields the most reliable results since every write
hits the remote disk before the process continues, but it has the
poorest performance.

— Caching with write through is equivalent to using remote service for all
writes, and exploits caching only for reads.

* Write back: yields the quickest response time since the write
need only hit cache before the process continues.

It reduces network traffic and the number of writes to the disk for
repeated writes to the same disk block, since only one of the writes will
go across the network.

— If a user machine crashes, the unwritten data is lost.

— Write-back when file is closed, a block is evicted from cache, or every
30sec.

: Computer Science (CS377: Operating Systems Lecture 26, page 14

Cache Consistency

* Client-initiated consistency: Client contacts the server and asks
if its copy 1s consistent with the server's copy.
— Can check every access.
— Can check at a given interval.
— Can check only upon opening a file.

* Server-initiated consistency: Server detects potential conflicts
and invalidates caches
— Server needs to know:
* which clients have cached which parts of which files.
* which clients are readers and which are writers.

| Computer Science (CS377: Operating Systems Lecture 26, page 15

Server State and Replication

» Stateful versus stateless server

— Web analogy
— Tradeoff between performance and tolerence to crash faults

* Replication
— Server data is replicated across machines

— Need to ensure consistency of files when a file is updated on
one server

| Computer Science (CS377: Operating Systems Lecture 26, page 16

Case Study: Sun's Network File System

* NFS is the standard for distributed UNIX file access.

* NFS is designed to run on LANs (but works on WANS)
* Nodes are both servers and clients.

* Servers have no state (NFS v3 only; NFS v4 is stateful)
« Uses a mount protocol to make a global name local

1. /etc/exports lists the local names the server is willing to export.

2. /etc/fstab lists the global names that the local nodes import. A
corresponding global name must be in /etc/exports on the server.

| Computer Science (CS377: Operating Systems Lecture 26, page 17

NFS Implementation

* NFS defines a set of RPC operations for remote file access:
1. directory search, reading directory entries
2. manipulating links and directories
3. accessing file attributes
4. reading/writing files
* Does not rely on node homogeneity - heterogeneous nodes must
simply support the NFS mount and remote access protocols
using RPC.
« Users may need to know different names depending upon the
node to which they logon.

| Computer Science (CS377: Operating Systems Lecture 26, page 18

NFS Implementation

System Call Interface
Virtual File System
UFS NFS
— RPC to other server nodes
local files remote files
- RPC requests from remote
- clients and server responses
buffer cache/inode table

Computer Science (CS377: Operating Systems Lecture 26, page 19

NFS Implementation

* NFS defines new layers in the Unix file system

* The virtual file system provides a standard interface, using vnodes as file
handles. A vnode describes either a local file or a remote file.

* The *"buffer cache" caches remote file blocks and attributes.

* On an open, the client asks the server whether its cached blocks are up to date.
* Once a file is open, different clients can write to it and get inconsistent data.

* Modified data is flushed back to the server every 30s.

* What file contents do new clients see?

— Effects of last flush. Writers might have made changes but not updated remote
file yet.

» What file contents do existing clients see?
— For cached blocks, they see out of date info. For new blocks, same as new client

Computer Science (S377: Operating Systems Lecture 26, page 20

Summary

¢ Naming
— Desire name independence, but it is difficult to attain
— Location dependent names are most prevalent

* Speed up remote file access with caching
* Need to write changes back to disk

Computer Science (CS377: Operating Systems Lecture 26, page 21

