CMPSCI 377: Operating Systems
Guest Lecture: David Irwin

Virtualization and Cloud Computing
Room 142

Virtualization

Program

I~dortaco A

Hadwir o soPwace wylerm A

* Virtualization: extend or replace an existing

interface to mimic the behavior of another
system.

— Introduced in 1970s: run legacy software on
newer mainframe hardware

« Handle platform diversity by running apps in

Types of Interfaces

Appicatx

* Different types of interfaces
— Assembly instructions
- System calls
- APIs
* Depending on what is replaced /
mimiced, we obtain different forms of

Types of Virtualization

 Emulation

- VM emulates/simulates complete
hardware

—Unmodified guest OS for a different PC
can be run
» Bochs, VirtualPC for Mac, QEMU

* Full/native Virtualization

- VM simulates “enough” hardware to allow
an unmodified guest OS to be run in

Types of virtualization

* Para-virtualization
— VM does not simulate hardware
— Use special API that a modified guest OS must use
— Hypercalls trapped by the Hypervisor and serviced
— Xen, VMWare ESX Server

» OS-level virtualization
— 0S allows multiple secure virtual servers to be run
— Guest 0S is the same as the host OS, but appears isolated

* apps see an isolated OS

— Solaris Containers, BSD Jails, Linux Vserver

» Application level virtualization

- A pli%ation is gives its own copy of components that are not
share

» (E.g., own registry files, global objects) - VE prevents
conflicts

= JVM, Rosetta on Mac

Types of Hypervisors

Guest OS process

\
Exced WTd Mplayer Apolion _“Q__Q__Q“ :r%sc:s?f
Guest OS 1
Type 2 hypervisor O O
Type 1 hypenrisor Host operating system
(a) ®)

* Type 1: hypervisor runs on “bare metal”
* Type 2: hypervisor runs on a host OS

— Guest OS runs inside hypervisor
* Both VM types act like real hardware

How Virtualization works?

CPU supports kernel and user mode (ring0, ring3)
— Set of instructions that can only be executed in kernel mode
* 1/O, change MMU settings etc -~ sensitive instructions
- Priv(i’leged instructions: cause a trap when executed in kernel
mode
Result: type 1 virtualization feasible if sensitive
instruction subset of privileged instructions

Intel 386: ignores sensitive instructions in user mode
— Can not support type 1 virtualization
Recent Intel/AMD CPUs have hardware support
- Intel VT, AMD SVM
» Create containers where a VM and guest can run

+ Hypervisor uses hardware bitmap to specify which inst
should trap

x86 virtualization isn’t
straightforward

» X86 instruction set contains 17 sensitive,
unprivileged instructions
- Sensitive register instructions: read/write sensitive
registers and memory locations, e.g.,clock/interrupt
registers
« SCDT, SIDT, SLDT
+ SMSW
+ PUSHF, POPF
~ Protect system instructions, i.e., reference the storage
protection system, memory or address relocation
system
+ LAR, LSL, VERR, VERW
* POP
+ PUSH
« CALL, JMP, INT n, RET

Type 1 hypervisor

U process
7
* Vil usew mode
Vi . U
radhre 1 | | mode
[T CPRLNINNG Ly = Vievsal weerwd rmode

L
Type § hypervince # Teap on privieged ratructon ™ ode

Hardware

* Unmodified OS is running in user mode (or
ring 1)
— But it thinks it is running in kernel mode (virtual
kernel mode)

— privileged instructions trap; sensitive inst-> use
to trap

— Hypervisor is the “real kernel”

Type 2 Hypervisor

* VMWare example
—Upon loading program: scans code for
basic blocks

- If sensitive instructions, replace by
Vmware procedure
* Binary translation

— Cache modified basic block in VMWare
cache
* Execute; load next basic block etc.

* Type 2 hypervisors work without VT

Paravirtualization

Trm ovtosms) wn e P oiranbs wu e

Urwreiie) Wivndren { R Moo Lrns
”

Type | hyparviace # Y S

| e |

* Both t é and 2 hypervisors work on
unmo |ﬁe

. Paravurtuallzatlon. modify OS kernel to

ep ace all sensitive instructions with
ypercalls

- OS"behaves like a user program making system
calls

Virtual machine Interface

WM Lirus VA Linux VI Lirex

VML HWirtertace WNIL % Vireare I VML % Xon ooy
T Semstwe | | =
n = + Hypervisor call 3 t Mﬁ.f.ﬂn cal
oxecuted by
+ HW Wwavw Xer
[| [et | [i |

« Standardize the VM interface so kernel
can run on bare hardware or any
hypervisor

Memory virtualization

« OS manages page tables
— Create new pagetable is sensitive -> traps to
hypervisor
* hypervisor manages multiple OS
— Need a second shadow page table
* Virtual = Physical
+ Physical - Machine
- 0S: VM virtual pages to VM's physical pages

- ;?ervisor maps to actual page in shadow page
table

- Two level mapping
— Need to catch changes to page table (not

/O Virtualization

» Each guest OS thinks it “owns” the disk

» Hypervisor creates “virtual disks”
— Large empty files on the physical disk that
appear as “disks” to the guest OS

* Hypervisor converts block # to file offset for I/
0

— DMA need physical addresses
* Hypervisor needs to translate

Examples

——

= + -
Virtual machine moniior

I Ltw e
Hardware

()

» Application-level virtualization: “process
virtual machine”

* VMM /hypervisor

Virtual Appliances & Multi-

« Virtual appliance: pre-configured VM
with OS/ apps pre-installed

—Just download and run (no need to install/
configure)

- Software distribution using appliances

» Multi-core CPUs
— Run multiple VMs on multi-core systems
— Each VM assigned one or more vCPU
—Mapping from vCPUs to physical CPUs

New Topic: Data Centers &
Cloud Computing

» Data Centers

* Cloud Computing

Data Centers

« Large server and storage farms

—Used by enterprises to run server
applications
—Used by Internet companies
* Google, Facebook, Youtube, Amazon...
—Sizes can vary depending on needs

Data Center Architecture

* Traditional: applications run on physical
servers
— Manual mapping of apps to servers

* Apps can be distributed
« Storage may be on a SAN or NAS

— IT admins deal with “change”

* Modern: virtualized data centers
— App run inside virtual servers; VM mapped
onto physical servers

— Provides flexiblility in mapping from virtual to
physical resources

Virtualized Data Centers

« Resource management is simplified

— Application can be started from
preconfigured VM images / appliances
- Virtualization layer / hypervisor permits
resource allocations to be varied

dynamically

—VMs can be migrated without application
down-time

Workload Management

Internet applications => dynamic
workloads

How much capacity to allocate to an
application?
— Incorrect workload estimate: over- or under-
provision capacity
— Major issue for internet facing applications
» Workload surges / flash crowds cause overloads

* Long-term incremental growth (workload doubles
every few months for many newly popular apps)

— Traditional approach: IT admins estimate
peak workloads and provision sufficient

Dynamic Provisioning

Track workload and dynamically provision
capacity

Monitor -> Predict -> Provision

Predictive versus reactive provisioning

— Predictive: predict future workload and provision

— Reactive: react whenever capacity falls short of
demand

Traditional data centers: bring up a new
server
* Borrow from Free pool or reclaim under-used server

Virtualized data center: exploit virtualization

Energy Management in Data
Centers

Energy: major component of operational cost
of data centers

— Large data centers have energy bills of several
million $.
— Where does it come from?
+ Power for servers and cooling

Data centers also have a large carbon
footprint

How to reduce energy usage?

Need energy-proportional systems
— Energy proportionality: energy use proportional to

Energy Management

Many approaches possible

Within a server:

— Shut-down certain components (cores, disks) when idling or at
low loads

- Use DVFS for CPU

Most effective: shutdown servers you don’'t need

- Consolidate workload onto a smaller # of servers

— Turn others off

Thermal management: move workload to cooling or
move cooling to where workloads are

— Reguires sensors and intelligent cooling systems

Container-based Data

» Modular design
* No expensive buildings needed

» Plug and play: plug power, network,
cooling vent

Example: Container DC

* Courtesy: Dan Reed,
Microso

— Talk at NSF workshop
* Benefits of MS Cen 4

data ctr

— Scalable

— Plug and play

— Pre-assembled

— Rapid deployment

— Reduced construction

Cloud Computing

 Data centers that rent servers/ storage

* Cloud: virtualized data center with
self-service web portal

* Any one with a “credit card” can rent
servers

« Automated allocation of servers

» Use virtualized architecture

Cloud Models

» Private clouds versus Public Clouds
—Who owns and runs the infrastructure?

« What is being rented?

— Infrastructure as a service (rent barebone
servers)
—Platform as a service (google app engine)

—Software as a service (gmail, online
backup, Salesforce.com)

Pricing and Usage Model

» Fine-grain pricing model
—Rent resources by the hour or by I/O
—Pay as you go (pay for only what you use)
» Can vary capacity as needed

—No need to build your own IT
infrastructure for peaks needs

Amazon EC2 Case Study

 Virtualized servers
- Different sizes / instances
» Storage: Simple storage service (S3)
— Elastic block service (EBS)
* Many other services
—Simple DB
- Database service
- Virtual private cloud

