
CMPSCI 377 Operating Systems Spring 2010

Lecture 21: April 8
Lecturer: Prashant Shenoy TA: Vimal Mathew & Tim Wood

21.1 I/O Systems

The I/O system responsible for managing input and output devices attached to a computer. A computer
system may have many types of devices ranging from ordinary disk drives or peripherals such as printers and
display cards, to more unusual devices such as joysticks, robot actuators, or fuel injection systems in a car.
A typical I/O system is composed of multiple components. The system bus is a shared communication
channel that allows devices to talk directly to the CPU. A device port can be thought of as an outlet to
which a device can be attached. The port typically consists of four registers, one to indicate the status of
the device, one for sending control messages, and one each for data being sent to or from the device. An
I/O controller is responsible for translating the commands that are transmitted over the system bus into
actions such as reads or writes that a device will perform.

The PCI bus is an example of a standard I/O bus that negotiates access between the CPU and a large
number of possible devices. In order to control these devices, the kernel I/O subsystem must interact with
device drivers designed for each device. These drivers translate high level commands from a user process
into messages sent to the device controller. The device controller in turn translates the commands into the
low level operations that the device must perform.

The operating system kernel provides a large number of services to support I/O. These include negotiating
access to devices between competing processes, buffering and caching to improve I/O performance, error
handling in the case of device failure, as well as I/O scheduling.

21.2 I/O Communication

The CPU needs some way to communicate with devices in order to determine when data is ready to be read
from the device, or to alert the device that it has commands to send to it. The simplest communication
method is polling. In this case, the CPU constantly “polls” the device to try to determine when it has
completed its most recent access. A typical polling scheme would go through the following steps:

1. CPU loads a register on the device controller with the command to be performed

2. The CPU changes the status of the device port to “command-ready”, in turn the controller changes
its status to “busy”

3. The controller reads the command register and performs the operation, and places the output of the
command into a buffer if required

4. If the command was successfully run, the controller changes its status back to “idle”

5. The CPU continuously checks the controller status until it sees “idle”, at that point, it reads the data
from the buffer, or sends a new command

21-1



21-2 Lecture 21: April 8

While this approach allows the CPU to immediately obtain data once it is ready from the device, it makes
the CPU busy-wait. We have shown previously that this is wasteful, since it would be best if the CPU could
perform other activities while the I/O was processed.

Rather than making the CPU busy-wait, communication using interrupts can be used to allow the CPU to
continue running other processes while I/O is performed. Once the I/O completes, the I/O controller sends
an interrupt to the CPU which alerts the OS that I/O is ready to be handled. To handle the interrupt, the
OS determines which device caused the interrupt and either reads the data produced by the device or issues
another command.

Although interrupt based I/O improves performance, it can still be slow since the CPU can only read in
a small amount of data per interrupt (based on the size of the data in register in the control port). This
can result in very poor performance for devices such as disks which must transfer very large amounts of
data. The common solution to this problem is Direct Memory Access (DMA). DMA requires a more
sophisticated device controller that is able to read or write directly to memory. This allows the CPU to
provide the DMA controller with an address telling it where to read or write data in memory. This allows
the DMA controller to read an entire request into memory before triggering the interrupt that tells the CPU
it has finished. This can dramatically reduce the number of interrupts the CPU must deal with, but it
causes some extra contention on the memory bus since both the CPU and DMA controller may be reading
or writing to memory at once (generally in different locations).

21.3 Programmer’s View of I/O

Operating systems mask the low level details of I/O devices from programmers. They provide a high-level
interface which simplifies the programmer’s job by creating a standard interface used across many types of
devices. Different devices may have different characteristics. The basic transfer unit may be a block for a
disk drive, but it could be a character in a device such as a modem. Another key difference between devices
is whether they support random access (e.g. a hard disk) or only sequential access (e.g. a keyboard). Devices
also may support either synchronous or asynchronous calls; typically devices are technically asynchronous,
but the I/O calls provided by the OS are synchronous in order to provide a simpler programming model.

21.4 Buffering & Caching

The nature of I/O requests is such that either the same or nearby blocks may be accessed multiple times
in a short interval. To improve performance, I/O devices typically include a small on-board memory where
they can temporarily store data before transferring it to or from the CPU. This allows a disk to buffer data
to be read from or written to the device while the DMA controller transfers it to memory.

Using buffers both within the OS and on a device allows the system to improve I/O performance or con-
sistency. This is particularly important when the speed of the device and the CPU are very different—the
CPU may quickly write a disk block to a buffer, and then the device will more slowly spool it out to disk.

The use of caches also helps the OS improve performance by reducing the number of device operations that
must actually be performed. For example, the OS can keep a memory cache holding recently used disk
blocks. When a new disk read comes in, the OS checks whether the disk block is already stored in the cache,
allowing it to be returned immediately. Storing blocks in a cache can significantly improve read performance,
but it also complicates writes. In a write-through policy, when the OS makes a write it applies it both
to the memory holding the block and to the disk itself immediately. This provides high reliability since all
writes are known to have been made to disk. However, faster write performance can be obtained with a



Lecture 21: April 8 21-3

write-back policy which only writes the update to the memory at first, and queues the write to disk to be
performed sometime later. This can lead to very fast writes, but results in a weaker reliability model since
the programmer cannot be sure that a disk write has truly gone to disk.


