
Computer Science Lecture 20, page 1 Computer Science CS377: Operating Systems

Today: Secondary Storage!

•  To read or write a disk block:
–  Seek: (latency) position head over a track/cylinder. The seek time depends

on how fast the hardware moves the arm.
–  Rotational delay: (latency) time for the sector to rotate underneath the

head. Rotational delay depends upon how fast the disk spins.
–  Transfer time: (bandwidth) time to move the bytes from the disk to

memory
–  Disk I/O Time = seek + rotational delay + transfer.

Computer Science Lecture 20, page 2 Computer Science CS377: Operating Systems

Typical Disk Parameters!
SATA disk SCSI disk

Disk Capacity 160 GB 146GB
Platters per pack 16 8
Tracks per surface 16,383 6,358
Sectors per track 63 644
Bytes per sector 512 732
Revolutions per minutes 7200 15,000
Average seek time 4 ms <4ms
Average rotational latency 4.17 ms 2 ms
Buffer to host burst transfer rate 78 MB/sec 85 MB/sec
Buffer size 8 MB 4 MB
size 3.5 inches 3.5 inches

Computer Science Lecture 20, page 3 Computer Science CS377: Operating Systems

Access Time!
•  Key: to get the quickest disk response time, we must minimize

seek time and rotational latency:
–  Make disks smaller
–  Spin disks faster
–  Schedule disk operations to minimize head movement
–  Lay out data on disk so that related data are on nearby tracks.
–  Place commonly-used files where on the disk?
–  We should also pick our sector size carefully:

•  If the sector size is too small, we will have a low transfer rate because we will
need to perform more seeks for the same amount of data.

•  If our sector size is too large, we will have lots of internal fragmentation.
•  NOTE: Solid state drives (SSD) will eliminate these problems.

Computer Science Lecture 20, page 4 Computer Science CS377: Operating Systems

Disk Head Scheduling!
•  Idea: Permute the order of disk requests from the order that they

arrive from the users to an order that reduces the length and
number of seeks.

1.  First-come, first-served (FCFS)
2.  Shortest seek time first (SSTF)
3.  SCAN algorithm (0 to 100, 100 to 0, 0 to 100, ...). If there is

no request between current position and the extreme (0 or N),
we don't have to seek there.

4.  C-SCAN circular scan algorithm (0 to 100, 0 to 100, ...)

Computer Science Lecture 20, page 5 Computer Science CS377: Operating Systems

FCFS Disk Head Scheduling!
Example requests: 65, 40, 18, 78

1.  FCFS - service the requests in the order that they come in

•  Order of seeks: 65, 40, 18, 78
•  Distance of seeks: 35 + 25 + 22 + 60 = 142
•  When would you expect this algorithm to work well?

•  During light loads ; also for SSD drives

Computer Science Lecture 20, page 6 Computer Science CS377: Operating Systems

SSTF Disk Head Scheduling!
•  SSTF: always go to the next closest request

–  Order of seeks: 40, 18, 65, 78
–  Distance of seeks: 10 + 22 + 47 + 13 = 92
–  Can implement this approach by keeping a doubly linked sorted list of

requests.
–  Is this efficient enough?
–  Is it optimal? Greedy (minimizes seek but not overall cost)
–  Problems? Potential for starvation

Computer Science Lecture 20, page 7 Computer Science CS377: Operating Systems

SCAN Disk Head Scheduling!
•  SCAN: head moves back and forth across the disk (0 to 100, 100

to 0, 0 to 100, ...), servicing requests as it passes them

–  Order of seeks, assuming the head is currently moving to lower numbered
blocks: 18, 40, 65, 78

–  Distance of seeks: 12 + 22 + 25 + 13 = 72
–  Requires a sorted list of requests.
–  Simple optimization does not go all the way to the edge of the disk each

time, but just as far as the last request.

Computer Science Lecture 20, page 8 Computer Science CS377: Operating Systems

C-SCAN Disk Head Scheduling!
•  C-SCAN: circular scan algorithm (0 to 100, 0 to 100, ...)

–  Order of seeks: 40, 65, 78, 18
–  Distance of seeks: 10 + 25 + 13 + 60 = 108
–  More uniform wait times for requests. Why?

•  At the end of a pass, most requests are likely to be at the other end.
With SCAN, these requests get serviced at the end of the sweep.

Computer Science Lecture 20, page 9 Computer Science CS377: Operating Systems

Improving Disk Performance using
Disk Interleaving!

•  Problem: Contiguous allocation of files on disk blocks only makes
sense if the OS can react to one disk response and issue the next
disk command before the disk spins past the next block.

•  Idea: Interleaving - Don't allocate blocks that are physically
contiguous, but those that are temporally contiguous relative to the
speed with which a second disk request can be received and the
rotational speed of the disk. Might use every second or third
block.

Computer Science Lecture 20, page 10 Computer Science CS377: Operating Systems

Improving Disk Performance using
Read Ahead!

•  Idea: read blocks from the disk ahead of user's request and place
in buffer on disk controller.

•  Goal: reduce the number of seeks - read blocks that will probably
be used while you have them under the head.

•  We considered pre-fetching virtual pages into physical memory,
but decided that was difficult to do well since the future is difficult
to predict. Is disk read-ahead any better?

Computer Science Lecture 20, page 11 Computer Science CS377: Operating Systems

Tertiary Storage!
•  Lower cost devices than secondary storage (disks)

•  Typically Slower, larger, cheaper than disks

•  Used primarily for storing archival data or backups.
–  tape drives
–  Jazz and Zip drives
–  Optical disks: Write once read-many (WORM), CD-R, CD-RW
–  Robotic jukeboxes

•  Primary, secondary and tertiary devices form a storage hierarchy

Computer Science Lecture 20, page 12 Computer Science CS377: Operating Systems

Summary!
•  Disks are slow devices relative to CPUs.
•  For most OS features, we are very concerned about efficiency.
•  For I/O systems, and disk, in particular, it is worthwhile to

complicate and slow down the OS if we can gain improvement in
I/O times.

•  Review Questions:
–  What property of disks can we use to make the insertion, deletion, and

access to the lists of requests fast?
–  Rank the algorithms according to their expected seek time.
–  Is SCAN or SSTF fairer?
–  Is SCAN or C-SCAN fairer?

